Identifier
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 0
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 0
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 0
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 0
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
[] => [1,0] => [1,0] => [1,1,0,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.