Identifier
- St001223: Dyck paths ⟶ ℤ (values match St000932The number of occurrences of the pattern UDU in a Dyck path., St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.)
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>2
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>0
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>3
[1,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>0
[1,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,1,0,0]=>3
[1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,0]=>3
[1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,0,1,0]=>0
[1,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,0,1,0]=>0
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>0
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,0]=>0
[1,1,1,1,0,0,1,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,0,1,1,0,0,1,0]=>3
[1,0,1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>3
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,0,1,1,1,1,0,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0,1,0]=>3
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,1,0,0,1,0,1,0]=>3
[1,0,1,1,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>1
[1,0,1,1,1,0,0,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,1,0,0,0,0]=>2
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>3
[1,1,0,0,1,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,0]=>0
[1,1,0,0,1,1,0,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,1,0,0]=>2
[1,1,0,0,1,1,0,1,1,0,0,0]=>1
[1,1,0,0,1,1,1,0,0,0,1,0]=>0
[1,1,0,0,1,1,1,0,0,1,0,0]=>0
[1,1,0,0,1,1,1,0,1,0,0,0]=>1
[1,1,0,0,1,1,1,1,0,0,0,0]=>0
[1,1,0,1,0,0,1,0,1,0,1,0]=>3
[1,1,0,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>1
[1,1,0,1,1,0,0,1,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,0,1,1,0,0]=>1
[1,1,1,0,0,0,1,1,0,0,1,0]=>0
[1,1,1,0,0,0,1,1,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,0]=>0
[1,1,1,0,0,1,0,0,1,0,1,0]=>1
[1,1,1,0,0,1,0,0,1,1,0,0]=>0
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,0,0,1,0]=>0
[1,1,1,0,0,1,1,0,0,1,0,0]=>0
[1,1,1,0,0,1,1,0,1,0,0,0]=>1
[1,1,1,0,0,1,1,1,0,0,0,0]=>0
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>1
[1,1,1,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,0,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>1
[1,1,1,1,0,0,0,0,1,1,0,0]=>0
[1,1,1,1,0,0,0,1,0,0,1,0]=>0
[1,1,1,1,0,0,0,1,0,1,0,0]=>1
[1,1,1,1,0,0,0,1,1,0,0,0]=>0
[1,1,1,1,0,0,1,0,0,0,1,0]=>0
[1,1,1,1,0,0,1,0,0,1,0,0]=>0
[1,1,1,1,0,0,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,1,1,0,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0]=>0
[1,1,1,1,1,0,0,0,0,1,0,0]=>0
[1,1,1,1,1,0,0,0,1,0,0,0]=>0
[1,1,1,1,1,0,0,1,0,0,0,0]=>0
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
References
[1] Tachikawa, H. Reflexive Auslander-Reiten sequences. zbMATH:0686.16023
Code
DeclareOperation("IsTorsionfree", [IsList]); InstallMethod(IsTorsionfree, "for a representation of a quiver", [IsList],0,function(L) local A,SS,CoRegA,dd1,dd2; A:=L[1]; SS:=L[2]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); dd1:=Size(ExtOverAlgebra(CoRegA,DTr(SS))[2]); return(dd1); end ); DeclareOperation("HasProjtorsionlessARseq", [IsList]); InstallMethod(HasProjtorsionlessARseq, "for a representation of a quiver", [IsList],0,function(L) local A,P,UU1,UU2; A:=L[1]; P:=L[2]; UU1:=DTr(P,-1); UU2:=Source(AlmostSplitSequence(UU1)[2]); return(IsTorsionfree([A,UU1])+IsTorsionfree([A,UU2])); end ); DeclareOperation("NumbertorsionfreeARseq", [IsList]); InstallMethod(NumbertorsionfreeARseq, "for a representation of a quiver", [IsList],0,function(L) local A,simA,prnotinjA,tulu,tr; L:=L[1]; A:=NakayamaAlgebra(L,GF(3)); simA:=SimpleModules(A);prnotinjA:=Filtered(simA,x->IsInjectiveModule(x)=false); tulu:=[];for i in prnotinjA do Append(tulu,[HasProjtorsionlessARseq([A,i])]);od; tr:=Filtered(tulu,x->(x=0)); return(Size(tr)); end );
Created
Jul 11, 2018 at 13:58 by Rene Marczinzik
Updated
Jul 11, 2018 at 13:58 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!