Identifier
- St001227: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>2
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>3
[1,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,1,0,0,1,0]=>4
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0]=>4
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0]=>3
[1,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>5
[1,0,1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,1,0,0,0]=>5
[1,0,1,0,1,1,1,1,0,0,0,0]=>5
[1,0,1,1,0,0,1,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,1,0,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>5
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,0,1,1,0,0,0]=>5
[1,0,1,1,0,1,1,0,0,0,1,0]=>5
[1,0,1,1,0,1,1,0,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,1,0,0,0]=>5
[1,0,1,1,0,1,1,1,0,0,0,0]=>5
[1,0,1,1,1,0,0,0,1,0,1,0]=>5
[1,0,1,1,1,0,0,0,1,1,0,0]=>5
[1,0,1,1,1,0,0,1,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>5
[1,0,1,1,1,0,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,1,0,0,0]=>5
[1,0,1,1,1,0,1,1,0,0,0,0]=>5
[1,0,1,1,1,1,0,0,0,0,1,0]=>5
[1,0,1,1,1,1,0,0,0,1,0,0]=>5
[1,0,1,1,1,1,0,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,1,0,0,0,0]=>5
[1,0,1,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0,1,0]=>4
[1,1,0,0,1,0,1,0,1,1,0,0]=>4
[1,1,0,0,1,0,1,1,0,0,1,0]=>4
[1,1,0,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,1,0,1,1,0,0,0]=>4
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,1,0,0,0]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>3
[1,1,1,0,0,0,1,1,0,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0,1,0]=>3
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,1,1,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Code
DeclareOperation("extsocrad", [IsList]); InstallMethod(extsocrad, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J,simA,U,projA,UU,g; A:=L[1]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); U:=SocleOfModule(RegA); J:=RadicalOfModule(RegA); return(Size(ExtOverAlgebra(NthSyzygy(U,0),J)[2])); end );
Created
Jul 18, 2018 at 20:01 by Rene Marczinzik
Updated
Jul 18, 2018 at 20:01 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!