Identifier
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,0,1,0] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 3
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => 3
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => 4
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 3
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,1,0,1,0,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => 6
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => 4
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,1,0,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => 6
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => 6
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
[] => [1,0] => [1,0] => [1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
inverse Kreweras complement
Description
Return the inverse of the Kreweras complement of a Dyck path, regarded as a noncrossing set partition.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the $i$-th up step of the Dyck path is the size of the block of the set partition whose maximal element is $i$. If $i$ is not a maximal element of a block, the $(i+1)$-st step is also an up step.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.