Identifier
Values
[[1]] => [1] => [1,0] => [1,0] => 0
[[1,2]] => [2] => [1,0,1,0] => [1,1,0,0] => 0
[[1],[2]] => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
[[1,2,3]] => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[[1,3],[2]] => [2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
[[1,2],[3]] => [2,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
[[1,2,3,4]] => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[[1,3,4],[2]] => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 1
[[1,2,4],[3]] => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 1
[[1,2,3],[4]] => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 1
[[1,3],[2,4]] => [2,2] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => 2
[[1,2],[3,4]] => [2,2] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => 2
[[1,2,3,4,5]] => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[[1,3,4,5],[2]] => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[[1,2,4,5],[3]] => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[[1,2,3,5],[4]] => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[[1,2,3,4],[5]] => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[[1,3,5],[2,4]] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[[1,2,5],[3,4]] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[[1,3,4],[2,5]] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[[1,2,4],[3,5]] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[[1,2,3],[4,5]] => [3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => 2
[[1,2,3,4,5,6]] => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[[1,3,4,5,6],[2]] => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[[1,2,4,5,6],[3]] => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[[1,2,3,5,6],[4]] => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[[1,2,3,4,6],[5]] => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[[1,2,3,4,5],[6]] => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[[1,3,5,6],[2,4]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,2,5,6],[3,4]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,3,4,6],[2,5]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,2,4,6],[3,5]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,2,3,6],[4,5]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,3,4,5],[2,6]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,2,4,5],[3,6]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,2,3,5],[4,6]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,2,3,4],[5,6]] => [4,2] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[[1,4],[2,5],[3,6]] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => 3
[[1,3],[2,5],[4,6]] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => 3
[[1,2],[3,5],[4,6]] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => 3
[[1,3],[2,4],[5,6]] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => 3
[[1,2],[3,4],[5,6]] => [2,2,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => 3
[[1,2,3,4,5,6,7]] => [7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
[[1,3,4,5,6,7],[2]] => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[[1,2,4,5,6,7],[3]] => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[[1,2,3,5,6,7],[4]] => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[[1,2,3,4,6,7],[5]] => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[[1,2,3,4,5,7],[6]] => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[[1,2,3,4,5,6],[7]] => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[[1,3,5,6,7],[2,4]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,5,6,7],[3,4]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,3,4,6,7],[2,5]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,4,6,7],[3,5]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,3,6,7],[4,5]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,3,4,5,7],[2,6]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,4,5,7],[3,6]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,3,5,7],[4,6]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,3,4,7],[5,6]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,3,4,5,6],[2,7]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,4,5,6],[3,7]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,3,5,6],[4,7]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,3,4,6],[5,7]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,2,3,4,5],[6,7]] => [5,2] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[[1,4,7],[2,5],[3,6]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,7],[2,5],[4,6]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,7],[3,5],[4,6]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,7],[2,4],[5,6]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,7],[3,4],[5,6]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,4,6],[2,5],[3,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,6],[2,5],[4,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,6],[3,5],[4,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,6],[2,4],[5,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,6],[3,4],[5,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,4,5],[2,6],[3,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,5],[2,6],[4,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,5],[3,6],[4,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,4],[2,6],[5,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,4],[3,6],[5,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,3],[4,6],[5,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,5],[2,4],[6,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,5],[3,4],[6,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,4],[2,5],[6,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,4],[3,5],[6,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,2,3],[4,5],[6,7]] => [3,2,2] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[[1,3,5,6,7,8],[2,4]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,5,6,7,8],[3,4]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,3,4,6,7,8],[2,5]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,4,6,7,8],[3,5]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,6,7,8],[4,5]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,3,4,5,7,8],[2,6]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,4,5,7,8],[3,6]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,5,7,8],[4,6]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,4,7,8],[5,6]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,3,4,5,6,8],[2,7]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,4,5,6,8],[3,7]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,5,6,8],[4,7]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,4,6,8],[5,7]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,4,5,8],[6,7]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,3,4,5,6,7],[2,8]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,4,5,6,7],[3,8]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,5,6,7],[4,8]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
>>> Load all 169 entries. <<<
[[1,2,3,4,6,7],[5,8]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,4,5,7],[6,8]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,2,3,4,5,6],[7,8]] => [6,2] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[[1,4,7,8],[2,5],[3,6]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,7,8],[2,5],[4,6]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,7,8],[3,5],[4,6]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,7,8],[2,4],[5,6]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,7,8],[3,4],[5,6]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,4,6,8],[2,5],[3,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,6,8],[2,5],[4,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,6,8],[3,5],[4,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,6,8],[2,4],[5,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,6,8],[3,4],[5,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,4,5,8],[2,6],[3,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,5,8],[2,6],[4,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,5,8],[3,6],[4,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,8],[2,6],[5,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,8],[3,6],[5,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,8],[4,6],[5,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,5,8],[2,4],[6,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,5,8],[3,4],[6,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,8],[2,5],[6,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,8],[3,5],[6,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,8],[4,5],[6,7]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,4,6,7],[2,5],[3,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,6,7],[2,5],[4,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,6,7],[3,5],[4,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,6,7],[2,4],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,6,7],[3,4],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,4,5,7],[2,6],[3,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,5,7],[2,6],[4,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,5,7],[3,6],[4,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,7],[2,6],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,7],[3,6],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,7],[4,6],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,5,7],[2,4],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,5,7],[3,4],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,7],[2,5],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,7],[3,5],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,7],[4,5],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,4,5,6],[2,7],[3,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,5,6],[2,7],[4,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,5,6],[3,7],[4,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,6],[2,7],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,6],[3,7],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,6],[4,7],[5,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,5],[2,7],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,5],[3,7],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,5],[4,7],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,4],[5,7],[6,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,5,6],[2,4],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,5,6],[3,4],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,6],[2,5],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,6],[3,5],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,6],[4,5],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,3,4,5],[2,6],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,4,5],[3,6],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,5],[4,6],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,4],[5,6],[7,8]] => [4,2,2] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[[1,2,3,4,5],[6,7],[8,9]] => [5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[[1,2,3],[4,5,6],[7,8,9]] => [3,3,3] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[[1,2,3,4],[5,6,7],[8,9,10]] => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[[1,2,7,8,9],[3,4],[5,6]] => [5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[[1,2,3,10],[4,5,6],[7,8,9]] => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[[1,2,3,4,7],[5,8],[6,9]] => [5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[[1,2,5,8],[3,6,9],[4,7,10]] => [4,3,3] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[[1,2,3,4,9],[5,6],[7,8]] => [5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[[1,2,5,8,9],[3,6],[4,7]] => [5,2,2] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
shape
Description
Sends a tableau to its shape.
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
peaks-to-valleys
Description
Return the path that has a valley wherever the original path has a peak of height at least one.
More precisely, the height of a valley in the image is the height of the corresponding peak minus $2$.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.