edit this statistic or download as text // json
Identifier
  • St001234: Dyck paths ⟶ ℤ (values match St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension.)
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>0 [1,1,0,0]=>0 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>0 [1,1,0,0,1,0]=>0 [1,1,0,1,0,0]=>0 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,0]=>0 [1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,0]=>0 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,0,0]=>2 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,0,1,0,0]=>0 [1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,1,1,0,0,0]=>0 [1,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,0,0]=>0 [1,1,0,1,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0]=>0 [1,1,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0]=>2 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>2 [1,1,1,1,0,1,0,0,0,0]=>2 [1,1,1,1,1,0,0,0,0,0]=>3 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,0,1,1,1,0,0,0]=>0 [1,0,1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,0,1,1,1,0,0,0,1,0]=>0 [1,0,1,0,1,1,1,0,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,1,0,0,0]=>0 [1,0,1,0,1,1,1,1,0,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,1,0,0]=>0 [1,0,1,1,0,0,1,1,1,0,0,0]=>0 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,0,1,1,0,0,0]=>0 [1,0,1,1,0,1,1,0,0,0,1,0]=>0 [1,0,1,1,0,1,1,0,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,1,0,0,0]=>0 [1,0,1,1,0,1,1,1,0,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0,1,0]=>0 [1,0,1,1,1,0,0,0,1,1,0,0]=>0 [1,0,1,1,1,0,0,1,0,0,1,0]=>0 [1,0,1,1,1,0,0,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,1,1,0,0,0]=>0 [1,0,1,1,1,0,1,0,0,0,1,0]=>0 [1,0,1,1,1,0,1,0,0,1,0,0]=>0 [1,0,1,1,1,0,1,0,1,0,0,0]=>0 [1,0,1,1,1,0,1,1,0,0,0,0]=>0 [1,0,1,1,1,1,0,0,0,0,1,0]=>1 [1,0,1,1,1,1,0,0,0,1,0,0]=>1 [1,0,1,1,1,1,0,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,1,0,0,0,0]=>1 [1,0,1,1,1,1,1,0,0,0,0,0]=>2 [1,1,0,0,1,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,0,1,1,1,0,0,0]=>0 [1,1,0,0,1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,1,0,0]=>0 [1,1,0,0,1,1,0,1,1,0,0,0]=>0 [1,1,0,0,1,1,1,0,0,0,1,0]=>0 [1,1,0,0,1,1,1,0,0,1,0,0]=>0 [1,1,0,0,1,1,1,0,1,0,0,0]=>0 [1,1,0,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,1,0,0,1,1,0,0,1,0]=>0 [1,1,0,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,1,0,0,1,1,1,0,0,0]=>0 [1,1,0,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,0,1,1,0,0,0]=>0 [1,1,0,1,0,1,1,0,0,0,1,0]=>0 [1,1,0,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,0,1,1,1,0,0,0,0]=>0 [1,1,0,1,1,0,0,0,1,0,1,0]=>0 [1,1,0,1,1,0,0,0,1,1,0,0]=>0 [1,1,0,1,1,0,0,1,0,0,1,0]=>0 [1,1,0,1,1,0,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,1,1,0,0,0]=>0 [1,1,0,1,1,0,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,1,0,0,0]=>0 [1,1,0,1,1,0,1,1,0,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0,1,0]=>0 [1,1,0,1,1,1,0,0,0,1,0,0]=>0 [1,1,0,1,1,1,0,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,1,0,0,0,0]=>0 [1,1,0,1,1,1,1,0,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,0,1,1,0,0]=>1 [1,1,1,0,0,0,1,1,0,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,1,0,0]=>1 [1,1,1,0,0,0,1,1,1,0,0,0]=>1 [1,1,1,0,0,1,0,0,1,0,1,0]=>1 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,1,0,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,1,0,0,0]=>1 [1,1,1,0,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,0,1,1,0,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0,1,0]=>1 [1,1,1,0,1,1,0,0,0,1,0,0]=>1 [1,1,1,0,1,1,0,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,1,0,0,0,0]=>1 [1,1,1,0,1,1,1,0,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0,1,0]=>2 [1,1,1,1,0,0,0,0,1,1,0,0]=>2 [1,1,1,1,0,0,0,1,0,0,1,0]=>2 [1,1,1,1,0,0,0,1,0,1,0,0]=>2 [1,1,1,1,0,0,0,1,1,0,0,0]=>2 [1,1,1,1,0,0,1,0,0,0,1,0]=>2 [1,1,1,1,0,0,1,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,1,1,0,0,0,0]=>2 [1,1,1,1,0,1,0,0,0,0,1,0]=>2 [1,1,1,1,0,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,1,0,0,1,0,0,0]=>2 [1,1,1,1,0,1,0,1,0,0,0,0]=>2 [1,1,1,1,0,1,1,0,0,0,0,0]=>2 [1,1,1,1,1,0,0,0,0,0,1,0]=>3 [1,1,1,1,1,0,0,0,0,1,0,0]=>3 [1,1,1,1,1,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,0,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,1,0,0,0,0,0]=>3 [1,1,1,1,1,1,0,0,0,0,0,0]=>4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable three dimensional modules with projective dimension one.
It return zero when there are no such modules.
Code

DeclareOperation("3dimproj",[IsList]);

InstallMethod(3dimproj, "for a representation of a quiver", [IsList],0,function(LIST)

local A,LL,LL2,U,simA;

A:=LIST[1];
LL:=ARQuiverNak([A]);
LL2:=Filtered(LL,x->Dimension(x)=3);
if Size(LL2)=0 then return(0);else
return(Size(Filtered(LL2,x->ProjDimensionOfModule(x,2)=1)));fi;
end);



Created
Aug 08, 2018 at 10:17 by Rene Marczinzik
Updated
Aug 08, 2018 at 10:17 by Rene Marczinzik