edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>2 [1,0,1,0]=>3 [1,1,0,0]=>3 [1,0,1,0,1,0]=>4 [1,0,1,1,0,0]=>4 [1,1,0,0,1,0]=>4 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>4 [1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,1,0,0]=>5 [1,0,1,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,0]=>4 [1,0,1,1,1,0,0,0]=>5 [1,1,0,0,1,0,1,0]=>5 [1,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>5 [1,1,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,1,1,0,0,0]=>6 [1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,0,0]=>5 [1,0,1,1,1,0,0,0,1,0]=>6 [1,0,1,1,1,0,0,1,0,0]=>5 [1,0,1,1,1,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0]=>6 [1,1,0,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,1,0,0]=>6 [1,1,0,0,1,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,0]=>5 [1,1,0,0,1,1,1,0,0,0]=>6 [1,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,0,0]=>3 [1,1,0,1,1,1,0,0,0,0]=>5 [1,1,1,0,0,0,1,0,1,0]=>6 [1,1,1,0,0,0,1,1,0,0]=>6 [1,1,1,0,0,1,0,0,1,0]=>5 [1,1,1,0,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,0,0]=>5 [1,1,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,0,0,0]=>4 [1,1,1,1,0,0,0,0,1,0]=>6 [1,1,1,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,0,0]=>4 [1,1,1,1,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0]=>6 [1,0,1,0,1,0,1,0,1,0,1,0]=>7 [1,0,1,0,1,0,1,0,1,1,0,0]=>7 [1,0,1,0,1,0,1,1,0,0,1,0]=>7 [1,0,1,0,1,0,1,1,0,1,0,0]=>6 [1,0,1,0,1,0,1,1,1,0,0,0]=>7 [1,0,1,0,1,1,0,0,1,0,1,0]=>7 [1,0,1,0,1,1,0,0,1,1,0,0]=>7 [1,0,1,0,1,1,0,1,0,0,1,0]=>6 [1,0,1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,0,1,1,0,1,1,0,0,0]=>6 [1,0,1,0,1,1,1,0,0,0,1,0]=>7 [1,0,1,0,1,1,1,0,0,1,0,0]=>6 [1,0,1,0,1,1,1,0,1,0,0,0]=>5 [1,0,1,0,1,1,1,1,0,0,0,0]=>7 [1,0,1,1,0,0,1,0,1,0,1,0]=>7 [1,0,1,1,0,0,1,0,1,1,0,0]=>7 [1,0,1,1,0,0,1,1,0,0,1,0]=>7 [1,0,1,1,0,0,1,1,0,1,0,0]=>6 [1,0,1,1,0,0,1,1,1,0,0,0]=>7 [1,0,1,1,0,1,0,0,1,0,1,0]=>6 [1,0,1,1,0,1,0,0,1,1,0,0]=>6 [1,0,1,1,0,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,0,1,1,0,0,0]=>5 [1,0,1,1,0,1,1,0,0,0,1,0]=>6 [1,0,1,1,0,1,1,0,0,1,0,0]=>5 [1,0,1,1,0,1,1,0,1,0,0,0]=>4 [1,0,1,1,0,1,1,1,0,0,0,0]=>6 [1,0,1,1,1,0,0,0,1,0,1,0]=>7 [1,0,1,1,1,0,0,0,1,1,0,0]=>7 [1,0,1,1,1,0,0,1,0,0,1,0]=>6 [1,0,1,1,1,0,0,1,0,1,0,0]=>5 [1,0,1,1,1,0,0,1,1,0,0,0]=>6 [1,0,1,1,1,0,1,0,0,0,1,0]=>5 [1,0,1,1,1,0,1,0,0,1,0,0]=>4 [1,0,1,1,1,0,1,0,1,0,0,0]=>4 [1,0,1,1,1,0,1,1,0,0,0,0]=>5 [1,0,1,1,1,1,0,0,0,0,1,0]=>7 [1,0,1,1,1,1,0,0,0,1,0,0]=>6 [1,0,1,1,1,1,0,0,1,0,0,0]=>5 [1,0,1,1,1,1,0,1,0,0,0,0]=>4 [1,0,1,1,1,1,1,0,0,0,0,0]=>7 [1,1,0,0,1,0,1,0,1,0,1,0]=>7 [1,1,0,0,1,0,1,0,1,1,0,0]=>7 [1,1,0,0,1,0,1,1,0,0,1,0]=>7 [1,1,0,0,1,0,1,1,0,1,0,0]=>6 [1,1,0,0,1,0,1,1,1,0,0,0]=>7 [1,1,0,0,1,1,0,0,1,0,1,0]=>7 [1,1,0,0,1,1,0,0,1,1,0,0]=>7 [1,1,0,0,1,1,0,1,0,0,1,0]=>6 [1,1,0,0,1,1,0,1,0,1,0,0]=>5 [1,1,0,0,1,1,0,1,1,0,0,0]=>6 [1,1,0,0,1,1,1,0,0,0,1,0]=>7 [1,1,0,0,1,1,1,0,0,1,0,0]=>6 [1,1,0,0,1,1,1,0,1,0,0,0]=>5 [1,1,0,0,1,1,1,1,0,0,0,0]=>7 [1,1,0,1,0,0,1,0,1,0,1,0]=>6 [1,1,0,1,0,0,1,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,1,0,0,1,0]=>6 [1,1,0,1,0,0,1,1,0,1,0,0]=>5 [1,1,0,1,0,0,1,1,1,0,0,0]=>6 [1,1,0,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,1,0,0,0]=>3 [1,1,0,1,0,1,1,1,0,0,0,0]=>5 [1,1,0,1,1,0,0,0,1,0,1,0]=>6 [1,1,0,1,1,0,0,0,1,1,0,0]=>6 [1,1,0,1,1,0,0,1,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,1,0,0]=>4 [1,1,0,1,1,0,0,1,1,0,0,0]=>5 [1,1,0,1,1,0,1,0,0,0,1,0]=>4 [1,1,0,1,1,0,1,0,0,1,0,0]=>3 [1,1,0,1,1,0,1,0,1,0,0,0]=>3 [1,1,0,1,1,0,1,1,0,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0,1,0]=>6 [1,1,0,1,1,1,0,0,0,1,0,0]=>5 [1,1,0,1,1,1,0,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,1,0,0,0,0]=>3 [1,1,0,1,1,1,1,0,0,0,0,0]=>6 [1,1,1,0,0,0,1,0,1,0,1,0]=>7 [1,1,1,0,0,0,1,0,1,1,0,0]=>7 [1,1,1,0,0,0,1,1,0,0,1,0]=>7 [1,1,1,0,0,0,1,1,0,1,0,0]=>6 [1,1,1,0,0,0,1,1,1,0,0,0]=>7 [1,1,1,0,0,1,0,0,1,0,1,0]=>6 [1,1,1,0,0,1,0,0,1,1,0,0]=>6 [1,1,1,0,0,1,0,1,0,0,1,0]=>5 [1,1,1,0,0,1,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,0,1,1,0,0,0]=>5 [1,1,1,0,0,1,1,0,0,0,1,0]=>6 [1,1,1,0,0,1,1,0,0,1,0,0]=>5 [1,1,1,0,0,1,1,0,1,0,0,0]=>4 [1,1,1,0,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,1,0,0,0,1,0,1,0]=>5 [1,1,1,0,1,0,0,0,1,1,0,0]=>5 [1,1,1,0,1,0,0,1,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,0,1,1,0,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0,1,0]=>5 [1,1,1,0,1,1,0,0,0,1,0,0]=>4 [1,1,1,0,1,1,0,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,1,0,0,0,0]=>3 [1,1,1,0,1,1,1,0,0,0,0,0]=>5 [1,1,1,1,0,0,0,0,1,0,1,0]=>7 [1,1,1,1,0,0,0,0,1,1,0,0]=>7 [1,1,1,1,0,0,0,1,0,0,1,0]=>6 [1,1,1,1,0,0,0,1,0,1,0,0]=>5 [1,1,1,1,0,0,0,1,1,0,0,0]=>6 [1,1,1,1,0,0,1,0,0,0,1,0]=>5 [1,1,1,1,0,0,1,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0,1,0]=>4 [1,1,1,1,0,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,1,0,0,0,0]=>3 [1,1,1,1,0,1,1,0,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0,1,0]=>7 [1,1,1,1,1,0,0,0,0,1,0,0]=>6 [1,1,1,1,1,0,0,0,1,0,0,0]=>5 [1,1,1,1,1,0,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,1,0,0,0,0,0]=>3 [1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra
Code


DeclareOperation("radsquareinjdim", [IsList]);

InstallMethod(radsquareinjdim, "for a representation of a quiver", [IsList],0,function(L)

local A,projA,U,UU;

A:=L[1];
projA:=IndecProjectiveModules(A);
U:=[];for i in projA do Append(U,[RadicalOfModule(RadicalOfModule(i))]);od;
UU:=Filtered(U,x->Dimension(x)=0 or InjDimensionOfModule(x,30)<=1);
return(Size(UU));
end
);

Created
Jul 20, 2018 at 14:29 by Rene Marczinzik
Updated
Jul 20, 2018 at 14:29 by Rene Marczinzik