Identifier
-
Mp00122:
Dyck paths
—Elizalde-Deutsch bijection⟶
Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001255: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => 1
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => 3
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 1
[1,0,1,0,1,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 3
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 4
[1,1,0,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 4
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 1
[1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 5
[1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => 5
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 4
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 5
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => 5
[1,1,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 4
[1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 3
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => 4
[1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => 5
[1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 4
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 3
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 5
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 6
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 6
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => 6
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 4
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 6
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 5
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 6
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 6
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 6
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 6
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 6
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 6
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 4
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 3
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 4
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 5
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 6
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 6
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 6
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 5
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 4
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 3
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 4
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 6
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => 5
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 4
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => 7
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => 7
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => 7
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => 7
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 7
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => 5
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => 5
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => 7
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 7
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 7
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 7
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => 7
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 7
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 7
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 7
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 7
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => 7
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 7
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 7
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => 7
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 7
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => 7
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 7
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 7
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The vector space dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
Elizalde-Deutsch bijection
Description
The Elizalde-Deutsch bijection on Dyck paths.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
.Let $n$ be the length of the Dyck path. Consider the steps $1,n,2,n-1,\dots$ of $D$. When considering the $i$-th step its corresponding matching step has not yet been read, let the $i$-th step of the image of $D$ be an up step, otherwise let it be a down step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!