edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>2 [1,0,1,0,1,0]=>3 [1,0,1,1,0,0]=>3 [1,1,0,0,1,0]=>3 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>2 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>4 [1,0,1,1,0,0,1,0]=>4 [1,0,1,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>4 [1,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,0,0]=>2 [1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,1,0,0,1,0]=>5 [1,0,1,0,1,1,0,1,0,0]=>4 [1,0,1,0,1,1,1,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0]=>5 [1,0,1,1,0,0,1,1,0,0]=>4 [1,0,1,1,0,1,0,0,1,0]=>4 [1,0,1,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,0]=>4 [1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,1,0,0,1,0]=>4 [1,1,0,0,1,1,0,1,0,0]=>4 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0]=>4 [1,1,0,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,0,0,1,0]=>4 [1,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,0,0]=>3 [1,1,0,1,1,1,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0]=>4 [1,1,1,0,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,0,1,0]=>4 [1,1,1,0,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,0,0]=>3 [1,1,1,0,1,0,0,0,1,0]=>3 [1,1,1,0,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0]=>2 [1,1,1,1,1,0,0,0,0,0]=>2 [1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,0,1,1,0,0]=>6 [1,0,1,0,1,0,1,1,0,0,1,0]=>6 [1,0,1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,0,1,1,1,0,0,0]=>5 [1,0,1,0,1,1,0,0,1,0,1,0]=>6 [1,0,1,0,1,1,0,0,1,1,0,0]=>5 [1,0,1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,0,1,1,0,1,1,0,0,0]=>5 [1,0,1,0,1,1,1,0,0,0,1,0]=>5 [1,0,1,0,1,1,1,0,0,1,0,0]=>5 [1,0,1,0,1,1,1,0,1,0,0,0]=>4 [1,0,1,0,1,1,1,1,0,0,0,0]=>4 [1,0,1,1,0,0,1,0,1,0,1,0]=>6 [1,0,1,1,0,0,1,0,1,1,0,0]=>5 [1,0,1,1,0,0,1,1,0,0,1,0]=>4 [1,0,1,1,0,0,1,1,0,1,0,0]=>5 [1,0,1,1,0,0,1,1,1,0,0,0]=>4 [1,0,1,1,0,1,0,0,1,0,1,0]=>5 [1,0,1,1,0,1,0,0,1,1,0,0]=>5 [1,0,1,1,0,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,1,0,0]=>5 [1,0,1,1,0,1,0,1,1,0,0,0]=>5 [1,0,1,1,0,1,1,0,0,0,1,0]=>5 [1,0,1,1,0,1,1,0,0,1,0,0]=>5 [1,0,1,1,0,1,1,0,1,0,0,0]=>4 [1,0,1,1,0,1,1,1,0,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0,1,0]=>5 [1,0,1,1,1,0,0,0,1,1,0,0]=>4 [1,0,1,1,1,0,0,1,0,0,1,0]=>5 [1,0,1,1,1,0,0,1,0,1,0,0]=>5 [1,0,1,1,1,0,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,1,0,0,1,0,0]=>4 [1,0,1,1,1,0,1,0,1,0,0,0]=>4 [1,0,1,1,1,0,1,1,0,0,0,0]=>4 [1,0,1,1,1,1,0,0,0,0,1,0]=>4 [1,0,1,1,1,1,0,0,0,1,0,0]=>4 [1,0,1,1,1,1,0,0,1,0,0,0]=>4 [1,0,1,1,1,1,0,1,0,0,0,0]=>3 [1,0,1,1,1,1,1,0,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0,1,0]=>6 [1,1,0,0,1,0,1,0,1,1,0,0]=>5 [1,1,0,0,1,0,1,1,0,0,1,0]=>5 [1,1,0,0,1,0,1,1,0,1,0,0]=>5 [1,1,0,0,1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,1,0,0,1,0,1,0]=>5 [1,1,0,0,1,1,0,0,1,1,0,0]=>4 [1,1,0,0,1,1,0,1,0,0,1,0]=>5 [1,1,0,0,1,1,0,1,0,1,0,0]=>5 [1,1,0,0,1,1,0,1,1,0,0,0]=>4 [1,1,0,0,1,1,1,0,0,0,1,0]=>4 [1,1,0,0,1,1,1,0,0,1,0,0]=>4 [1,1,0,0,1,1,1,0,1,0,0,0]=>4 [1,1,0,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,0,1,1,0,0]=>5 [1,1,0,1,0,0,1,1,0,0,1,0]=>5 [1,1,0,1,0,0,1,1,0,1,0,0]=>4 [1,1,0,1,0,0,1,1,1,0,0,0]=>4 [1,1,0,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,1,0,0,1,1,0,0]=>5 [1,1,0,1,0,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,1,0,0,0]=>4 [1,1,0,1,0,1,1,1,0,0,0,0]=>4 [1,1,0,1,1,0,0,0,1,0,1,0]=>5 [1,1,0,1,1,0,0,0,1,1,0,0]=>4 [1,1,0,1,1,0,0,1,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,1,0,0]=>4 [1,1,0,1,1,0,0,1,1,0,0,0]=>4 [1,1,0,1,1,0,1,0,0,0,1,0]=>4 [1,1,0,1,1,0,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,1,0,0,0]=>4 [1,1,0,1,1,0,1,1,0,0,0,0]=>4 [1,1,0,1,1,1,0,0,0,0,1,0]=>4 [1,1,0,1,1,1,0,0,0,1,0,0]=>4 [1,1,0,1,1,1,0,0,1,0,0,0]=>4 [1,1,0,1,1,1,0,1,0,0,0,0]=>3 [1,1,0,1,1,1,1,0,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0,1,0]=>5 [1,1,1,0,0,0,1,0,1,1,0,0]=>4 [1,1,1,0,0,0,1,1,0,0,1,0]=>4 [1,1,1,0,0,0,1,1,0,1,0,0]=>4 [1,1,1,0,0,0,1,1,1,0,0,0]=>3 [1,1,1,0,0,1,0,0,1,0,1,0]=>5 [1,1,1,0,0,1,0,0,1,1,0,0]=>4 [1,1,1,0,0,1,0,1,0,0,1,0]=>5 [1,1,1,0,0,1,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,1,1,0,0,1,0,0]=>4 [1,1,1,0,0,1,1,0,1,0,0,0]=>4 [1,1,1,0,0,1,1,1,0,0,0,0]=>3 [1,1,1,0,1,0,0,0,1,0,1,0]=>4 [1,1,1,0,1,0,0,0,1,1,0,0]=>4 [1,1,1,0,1,0,0,1,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,1,0,0]=>4 [1,1,1,0,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,1,0,1,0,0,0]=>4 [1,1,1,0,1,0,1,1,0,0,0,0]=>4 [1,1,1,0,1,1,0,0,0,0,1,0]=>4 [1,1,1,0,1,1,0,0,0,1,0,0]=>4 [1,1,1,0,1,1,0,0,1,0,0,0]=>4 [1,1,1,0,1,1,0,1,0,0,0,0]=>3 [1,1,1,0,1,1,1,0,0,0,0,0]=>3 [1,1,1,1,0,0,0,0,1,0,1,0]=>4 [1,1,1,1,0,0,0,0,1,1,0,0]=>3 [1,1,1,1,0,0,0,1,0,0,1,0]=>4 [1,1,1,1,0,0,0,1,0,1,0,0]=>4 [1,1,1,1,0,0,0,1,1,0,0,0]=>3 [1,1,1,1,0,0,1,0,0,0,1,0]=>4 [1,1,1,1,0,0,1,0,0,1,0,0]=>4 [1,1,1,1,0,0,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,1,1,0,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,1,0,0,0,0]=>3 [1,1,1,1,0,1,1,0,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0,1,0]=>3 [1,1,1,1,1,0,0,0,0,1,0,0]=>3 [1,1,1,1,1,0,0,0,1,0,0,0]=>3 [1,1,1,1,1,0,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,1,0,0,0,0,0]=>2 [1,1,1,1,1,1,0,0,0,0,0,0]=>2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra.
For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
Code


DeclareOperation("prinjsum",[IsList]);

InstallMethod(prinjsum, "for a representation of a quiver", [IsList],0,function(LIST)

local A,C,D,B,CoRegB,U,RegB;

A:=LIST[1];
C:=ARQuiverNak([A]);
U:=[];for i in C do Append(U,[ProjDimensionOfModule(i,30)+InjDimensionOfModule(i,30)]);od;
return(Maximum(U));
end);






Created
Sep 19, 2018 at 21:34 by Rene Marczinzik
Updated
Sep 19, 2018 at 22:12 by Rene Marczinzik