Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St001258: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => 1
[1,0,1,0] => [1,0,1,0] => [1,0,1,0] => 2
[1,1,0,0] => [1,0,1,0] => [1,0,1,0] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,0,1,1,0,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,1,0,0,1,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => 3
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => 4
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => 4
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => 4
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => 4
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => 4
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => 4
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => 3
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 5
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra.
For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
For at most 6 simple modules this statistic coincides with the injective dimension of the regular module as a bimodule.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!