Identifier
- St001265: Dyck paths ⟶ ℤ
Values
[1,0] => 0
[1,0,1,0] => 0
[1,1,0,0] => 1
[1,0,1,0,1,0] => 0
[1,0,1,1,0,0] => 1
[1,1,0,0,1,0] => 0
[1,1,0,1,0,0] => 0
[1,1,1,0,0,0] => 2
[1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,0] => 0
[1,0,1,1,1,0,0,0] => 2
[1,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,0,1,0] => 0
[1,1,0,1,0,1,0,0] => 0
[1,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,0] => 0
[1,1,1,0,0,1,0,0] => 0
[1,1,1,0,1,0,0,0] => 0
[1,1,1,1,0,0,0,0] => 3
[1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,1,0,0] => 3
[1,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,1,0,0] => 0
[1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,0] => 3
[1,1,0,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,1,0,0] => 1
[1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,0,0] => 0
[1,1,0,0,1,1,1,0,0,0] => 2
[1,1,0,1,0,0,1,0,1,0] => 0
[1,1,0,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,1,0,0,1,0] => 0
[1,1,0,1,0,1,0,1,0,0] => 1
[1,1,0,1,0,1,1,0,0,0] => 1
[1,1,0,1,1,0,0,0,1,0] => 2
[1,1,0,1,1,0,0,1,0,0] => 0
[1,1,0,1,1,0,1,0,0,0] => 0
[1,1,0,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,0,1,0] => 0
[1,1,1,0,0,1,0,1,0,0] => 0
[1,1,1,0,0,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0,1,0] => 0
[1,1,1,0,1,0,0,1,0,0] => 0
[1,1,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,0,0,0,0,1,0] => 0
[1,1,1,1,0,0,0,1,0,0] => 0
[1,1,1,1,0,0,1,0,0,0] => 0
[1,1,1,1,0,1,0,0,0,0] => 0
[1,1,1,1,1,0,0,0,0,0] => 4
[1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,0,1,1,0,0] => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => 0
[1,0,1,0,1,1,0,1,1,0,0,0] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,0,1,1,1,0,1,0,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => 4
[1,0,1,1,0,0,1,1,0,1,0,0] => 0
[1,0,1,1,0,0,1,1,1,0,0,0] => 4
[1,0,1,1,0,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,1,0,1,0,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,1,0,0,1,0] => 0
[1,0,1,1,1,0,0,1,0,1,0,0] => 0
[1,0,1,1,1,0,0,1,1,0,0,0] => 4
[1,0,1,1,1,0,1,0,0,0,1,0] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => 0
[1,0,1,1,1,0,1,1,0,0,0,0] => 1
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra.
Code
DeclareOperation("largestindexgldim", [IsList]);
InstallMethod(largestindexgldim, "for a representation of a quiver", [IsList],0,function(L)
local AA,A,g,simA,n,U;
AA:=L[1];
A:=NakayamaAlgebra(AA,GF(3));
g:=gldim(AA);
simA:=SimpleModules(A);
n:=Size(simA);
U:=Filtered([1..n],x->ProjDimensionOfModule(simA[x],30)=g);
return(Maximum(U)-1);
end
);
Created
Sep 26, 2018 at 21:58 by Rene Marczinzik
Updated
Sep 26, 2018 at 21:58 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!