Identifier
Values
([(0,1)],2) => ([],1) => ([],1) => ([],1) => 0
([(1,2)],3) => ([],1) => ([],1) => ([],1) => 0
([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2) => ([],2) => 0
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(2,3)],4) => ([],1) => ([],1) => ([],1) => 0
([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => ([],2) => 0
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(0,3),(1,2)],4) => ([],2) => ([(0,1)],2) => ([(0,1)],2) => 1
([(0,3),(1,2),(2,3)],4) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(1,2)],3) => 0
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => ([(2,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
([(3,4)],5) => ([],1) => ([],1) => ([],1) => 0
([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => ([],2) => 0
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4) => 0
([(1,4),(2,3)],5) => ([],2) => ([(0,1)],2) => ([(0,1)],2) => 1
([(1,4),(2,3),(3,4)],5) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(1,2)],3) => 0
([(0,1),(2,4),(3,4)],5) => ([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => ([(2,3)],4) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 3
([(4,5)],6) => ([],1) => ([],1) => ([],1) => 0
([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => ([],2) => 0
([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4) => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => ([],5) => 0
([(2,5),(3,4)],6) => ([],2) => ([(0,1)],2) => ([(0,1)],2) => 1
([(2,5),(3,4),(4,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(1,2)],3) => 0
([(1,2),(3,5),(4,5)],6) => ([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => 0
([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 1
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => ([(2,3)],4) => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 0
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 4
([(0,5),(1,4),(2,3)],6) => ([],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,4),(1,5),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => 1
>>> Load all 252 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The competition number of a graph.
The competition graph of a digraph $D$ is a (simple undirected) graph which has the same vertex set as $D$ and has an edge between $x$ and $y$ if and only if there exists a vertex $v$ in $D$ such that $(x, v)$ and $(y, v)$ are arcs of $D$. For any graph, $G$ together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ is the smallest number of such isolated vertices.
The competition graph of a digraph $D$ is a (simple undirected) graph which has the same vertex set as $D$ and has an edge between $x$ and $y$ if and only if there exists a vertex $v$ in $D$ such that $(x, v)$ and $(y, v)$ are arcs of $D$. For any graph, $G$ together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ is the smallest number of such isolated vertices.
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Map
Ore closure
Description
The Ore closure of a graph.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!