Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001271: Graphs ⟶ ℤ
Values
{{1}} => [1] => ([],1) => ([(0,1)],2) => 1
{{1,2}} => [2,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 1
{{1},{2}} => [1,2] => ([],2) => ([(0,2),(1,2)],3) => 1
{{1,2,3}} => [2,3,1] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2},{3}} => [2,1,3] => ([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3},{2}} => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1},{2,3}} => [1,3,2] => ([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1},{2},{3}} => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 1
{{1,2,3,4}} => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,2,3},{4}} => [2,3,1,4] => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,2,4},{3}} => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,2},{3,4}} => [2,1,4,3] => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 1
{{1,2},{3},{4}} => [2,1,3,4] => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,3,4},{2}} => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,3},{2,4}} => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 2
{{1,3},{2},{4}} => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,4},{2,3}} => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2,3,4}} => [1,3,4,2] => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2,3},{4}} => [1,3,2,4] => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,4},{2},{3}} => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2,4},{3}} => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2},{3,4}} => [1,2,4,3] => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1},{2},{3},{4}} => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
{{1,2,3,4,5}} => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,3,4},{5}} => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,3,5},{4}} => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,3},{4,5}} => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,3},{4},{5}} => [2,3,1,4,5] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,4,5},{3}} => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,4},{3},{5}} => [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,5},{3,4}} => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2},{3,4,5}} => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2},{3,4},{5}} => [2,1,4,3,5] => ([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
{{1,2,5},{3},{4}} => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2},{3,5},{4}} => [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2},{3},{4,5}} => [2,1,3,5,4] => ([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
{{1,2},{3},{4},{5}} => [2,1,3,4,5] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,4,5},{2}} => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,4},{2},{5}} => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,5},{2,4}} => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,5},{2},{4}} => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3},{2,5},{4}} => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3},{2},{4,5}} => [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3},{2},{4},{5}} => [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4,5},{2,3}} => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4},{2,3},{5}} => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2,3,4}} => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3,4,5}} => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3,4},{5}} => [1,3,4,2,5] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2,3},{4}} => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3,5},{4}} => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,3},{4,5}} => [1,3,2,5,4] => ([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
{{1},{2,3},{4},{5}} => [1,3,2,4,5] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4,5},{2},{3}} => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4},{2},{3,5}} => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,4},{2},{3},{5}} => [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2,4},{3}} => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,4,5},{3}} => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,4},{3},{5}} => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2},{3,4}} => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,5},{3,4}} => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2},{3,4,5}} => [1,2,4,5,3] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2},{3,4},{5}} => [1,2,4,3,5] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2,5},{3},{4}} => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2},{3,5},{4}} => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2},{3},{4,5}} => [1,2,3,5,4] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 1
{{1,2,3,4,5,6}} => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,4,5},{6}} => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,4,6},{5}} => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,4},{5,6}} => [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,4},{5},{6}} => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,5,6},{4}} => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,5},{4},{6}} => [2,3,5,4,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,6},{4,5}} => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3},{4,5,6}} => [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 1
{{1,2,3},{4,5},{6}} => [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3,6},{4},{5}} => [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3},{4,6},{5}} => [2,3,1,6,5,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 1
{{1,2,3},{4},{5,6}} => [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,3},{4},{5},{6}} => [2,3,1,4,5,6] => ([(3,5),(4,5)],6) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,4,5,6},{3}} => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,4,5},{3},{6}} => [2,4,3,5,1,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,4,6},{3,5}} => [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,4,6},{3},{5}} => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,4},{3},{5,6}} => [2,4,3,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,4},{3},{5},{6}} => [2,4,3,1,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,5,6},{3,4}} => [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,5},{3,4},{6}} => [2,5,4,3,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,6},{3,4,5}} => [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2},{3,4,5,6}} => [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2},{3,4,5},{6}} => [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,6},{3,4},{5}} => [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2},{3,4,6},{5}} => [2,1,4,6,5,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2},{3,4},{5,6}} => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 1
{{1,2},{3,4},{5},{6}} => [2,1,4,3,5,6] => ([(2,5),(3,4)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 1
{{1,2,5,6},{3},{4}} => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,5},{3},{4},{6}} => [2,5,3,4,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2,6},{3,5},{4}} => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
{{1,2},{3,5,6},{4}} => [2,1,5,4,6,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
>>> Load all 212 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The competition number of a graph.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) is the smallest number of such isolated vertices.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) is the smallest number of such isolated vertices.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!