Identifier
- St001273: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>0
[1,1,0,0]=>1
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,0,1,1,0,1,0,1,0,0]=>0
[1,0,1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,1,0,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0,1,0]=>0
[1,0,1,1,0,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,1,0,0]=>3
[1,0,1,1,0,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,1,0,0,1,0,1,0]=>3
[1,0,1,1,0,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,1,0,0]=>0
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>3
[1,0,1,1,0,1,1,0,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>1
[1,0,1,1,1,0,0,0,1,1,0,0]=>1
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>0
[1,0,1,1,1,0,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>2
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,1,0,0]=>1
[1,1,0,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,1,1,0,0,0,1,0]=>1
[1,1,0,0,1,1,1,0,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,1,0,0,1,0,1,0]=>0
[1,1,0,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,0,1,0]=>0
[1,1,0,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,0,1,1,0,0,0,1,0]=>0
[1,1,0,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>2
[1,1,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0,1,0]=>2
[1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,1,1,0,0,0,1,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,0,1,1,0,0]=>1
[1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>2
[1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>0
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>1
[1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>1
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The projective dimension of the first term in an injective coresolution of the regular module.
The algebra has the double centraliser property when 0 is returned and it is 1-Gorenstein in case a number < =1 is returned.
The algebra has the double centraliser property when 0 is returned and it is 1-Gorenstein in case a number < =1 is returned.
Code
DeclareOperation("pdii",[IsList]); InstallMethod(pdii, "for a representation of a quiver", [IsList],0,function(LIST) local M, n, f, N, i, h,g,A,injA,CoRegA,temp,temp2,temp3,uu,W,WW,RegA; A:=LIST[1]; i:=LIST[2]; RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A)); W:=Range(InjectiveEnvelope(DualOfModule(NthSyzygy(DualOfModule(RegA),i)))); WW:=ProjDimensionOfModule(W,30); return(WW); end);
Created
Oct 16, 2018 at 22:18 by Rene Marczinzik
Updated
Oct 16, 2018 at 22:18 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!