Identifier
- St001274: Dyck paths ⟶ ℤ
Values
[1,0] => 0
[1,0,1,0] => 1
[1,1,0,0] => 0
[1,0,1,0,1,0] => 0
[1,0,1,1,0,0] => 1
[1,1,0,0,1,0] => 1
[1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => 0
[1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0] => 0
[1,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,0] => 0
[1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,0] => 1
[1,1,0,1,1,0,0,0] => 2
[1,1,1,0,0,0,1,0] => 1
[1,1,1,0,0,1,0,0] => 2
[1,1,1,0,1,0,0,0] => 3
[1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,0] => 0
[1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,1,0,0] => 1
[1,0,1,1,0,1,1,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,1,0,0,0] => 0
[1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,1,0,0] => 0
[1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,0,0] => 0
[1,1,0,0,1,1,1,0,0,0] => 1
[1,1,0,1,0,0,1,0,1,0] => 1
[1,1,0,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,1,0,0,1,0] => 1
[1,1,0,1,0,1,0,1,0,0] => 0
[1,1,0,1,0,1,1,0,0,0] => 1
[1,1,0,1,1,0,0,0,1,0] => 3
[1,1,0,1,1,0,0,1,0,0] => 1
[1,1,0,1,1,0,1,0,0,0] => 1
[1,1,0,1,1,1,0,0,0,0] => 2
[1,1,1,0,0,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,0,1,0] => 1
[1,1,1,0,0,1,0,1,0,0] => 1
[1,1,1,0,0,1,1,0,0,0] => 2
[1,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,0,1,0,0,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => 2
[1,1,1,0,1,1,0,0,0,0] => 3
[1,1,1,1,0,0,0,0,1,0] => 1
[1,1,1,1,0,0,0,1,0,0] => 2
[1,1,1,1,0,0,1,0,0,0] => 3
[1,1,1,1,0,1,0,0,0,0] => 4
[1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => 0
[1,0,1,1,0,1,0,1,1,0,0,0] => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => 1
[1,0,1,1,0,1,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,1,0,1,0,0,0] => 1
[1,0,1,1,0,1,1,1,0,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,1,0,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => 0
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable injective modules with projective dimension equal to two.
Code
DeclareOperation("testii",[IsList]);
InstallMethod(testii, "for a representation of a quiver", [IsList],0,function(LIST)
local M, n, f, N, i, h,g,A,injA,CoRegA,temp,temp2,temp3,uu,W,WW,RegA;
A:=LIST[1];
injA:=IndecInjectiveModules(A);
W:=Filtered(injA,x->ProjDimensionOfModule(x,30)=2);
return(Size(W));
end);
Created
Oct 17, 2018 at 00:26 by Rene Marczinzik
Updated
Oct 17, 2018 at 10:57 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!