Identifier
            
            - 
Mp00199:
    Dyck paths
    
—prime Dyck path⟶
Dyck paths
		
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001276: Dyck paths ⟶ ℤ 
                Values
            
            [1,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 1
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => 0
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => 1
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 0
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 0
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 0
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => 0
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => 0
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 0
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 0
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 0
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => 0
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0] => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0,1,0] => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0,1,0] => 0
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,1,0,0] => 0
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,1,0,1,0,0] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0] => 0
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0] => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,1,0,0,0,0] => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0] => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0,1,0] => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0,1,0] => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0] => 0
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,0,1,0,0] => 1
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,1,0,0] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0,1,0] => 0
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,1,0,0,0] => 0
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => 0
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0,1,0] => 0
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => 0
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,1,0,0,0] => 0
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0,1,0] => 0
>>> Load all 197 entries. <<<
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                    /
                    
                        
			search for generating function
                        
                            searching the database for statistics with the same generating function
                        
                    
                    
                Description
            The number of 2-regular indecomposable modules in the corresponding Nakayama algebra.
Generalising the notion of k-regular modules from simple to arbitrary indecomposable modules, we call an indecomposable module $M$ over an algebra $A$ k-regular in case it has projective dimension k and $Ext_A^i(M,A)=0$ for $i \neq k$ and $Ext_A^k(M,A)$ is 1-dimensional.
The number of Dyck paths where the statistic returns 0 might be given by OEIS:A035929 .
	Generalising the notion of k-regular modules from simple to arbitrary indecomposable modules, we call an indecomposable module $M$ over an algebra $A$ k-regular in case it has projective dimension k and $Ext_A^i(M,A)=0$ for $i \neq k$ and $Ext_A^k(M,A)$ is 1-dimensional.
The number of Dyck paths where the statistic returns 0 might be given by OEIS:A035929 .
Map
            Lalanne-Kreweras involution
	    
	Description
            The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
	Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
            prime Dyck path
	    
	Description
            Return the Dyck path obtained by adding an initial up and a final down step.
	searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!