Identifier
Values
['A',1] => ([],1) => [1] => [1] => 1
['A',2] => ([(0,2),(1,2)],3) => [2,1] => [3] => 0
['B',2] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [2,1,1] => 1
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [2,2,1,1] => 1
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [3,3] => 0
['B',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 0
['C',3] => ([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9) => [5,3,1] => [3,2,2,1,1] => 0
['A',4] => ([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10) => [4,3,2,1] => [5,5] => 0
['B',4] => ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16) => [7,5,3,1] => [4,3,3,2,2,1,1] => 0
['C',4] => ([(0,13),(1,12),(2,13),(2,15),(3,12),(3,15),(5,11),(6,7),(7,4),(8,9),(9,10),(10,7),(11,6),(11,10),(12,8),(13,5),(13,14),(14,9),(14,11),(15,8),(15,14)],16) => [7,5,3,1] => [4,3,3,2,2,1,1] => 0
['D',4] => ([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12) => [5,3,3,1] => [3,3,2,2,1,1] => 0
['A',5] => ([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15) => [5,4,3,2,1] => [5,5,5] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of finite solvable groups that are realised by the given partition over the complex numbers.
A finite group $G$ is realised by the partition $(a_1,\dots,a_m)$ if its group algebra over the complex numbers is isomorphic to the direct product of $a_i\times a_i$ matrix rings over the complex numbers.
The smallest partition which does not realise a solvable group, but does realise a finite group, is $(5,4,3,3,1)$.
Map
2-conjugate
Description
Return a partition with the same number of odd parts and number of even parts interchanged with the number of cells with zero leg and odd arm length.
This is a special case of an involution that preserves the sequence of non-zero remainders of the parts under division by $s$ and interchanges the number of parts divisible by $s$ and the number of cells with zero leg length and arm length congruent to $s-1$ modulo $s$.
In particular, for $s=1$ the involution is conjugation, hence the name.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.