Identifier
- St001289: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>1
[1,1,0,0]=>1
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>3
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0]=>5
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,0,0,0]=>6
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,1,0,0]=>1
[1,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,0]=>1
[1,0,1,1,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,1,1,0,0,1,0,0]=>1
[1,0,1,1,0,1,1,0,1,0,0,0]=>1
[1,0,1,1,0,1,1,1,0,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0,1,0]=>1
[1,0,1,1,1,0,0,0,1,1,0,0]=>1
[1,0,1,1,1,0,0,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>2
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>2
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>1
[1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,1,0,0]=>1
[1,1,0,0,1,1,0,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,0]=>1
[1,1,0,0,1,1,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>1
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>1
[1,1,0,1,0,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,0]=>1
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>1
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>1
[1,1,0,1,1,1,0,0,0,0,1,0]=>2
[1,1,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,1,0,0,0,0]=>1
[1,1,0,1,1,1,1,0,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,0,1,1,0,0]=>1
[1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,1,0,0,1,0]=>1
[1,1,1,0,0,1,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>1
[1,1,1,0,0,1,1,1,0,0,0,0]=>8
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,1,0,0,1,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,0,1,1,0,0,0,0]=>8
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,0,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,1,0,0,0,0]=>7
[1,1,1,0,1,1,1,0,0,0,0,0]=>5
[1,1,1,1,0,0,0,0,1,0,1,0]=>1
[1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,1,0,0]=>1
[1,1,1,1,0,0,0,1,1,0,0,0]=>8
[1,1,1,1,0,0,1,0,0,0,1,0]=>3
[1,1,1,1,0,0,1,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,1,0,0,0]=>8
[1,1,1,1,0,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,1,0,0,1,0,0,0]=>7
[1,1,1,1,0,1,0,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>6
[1,1,1,1,1,0,0,0,1,0,0,0]=>5
[1,1,1,1,1,0,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,1,0,0,0,0,0]=>3
[1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero.
This n-fold tensor product seems to be always injective.
This n-fold tensor product seems to be always injective.
Code
DeclareOperation("iterateddadim", [IsList]); InstallMethod(iterateddadim, "for a representation of a quiver", [IsList],0,function(L) local A,RegA,J,simA,U,projA,UU,CoRegA,W,WW,WW2,tt; A:=L[1]; CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A)); W:=NakayamaFunctorOfModule(CoRegA); WW:=[NakayamaFunctorOfModule(CoRegA)];for k in [2..20] do Append(WW,[NakayamaFunctorOfModule(WW[k-1])]);;od; WW2:=Filtered([1..20],x->Dimension(WW[x])>0); tt:=Maximum(WW2); return(Dimension(WW[tt])); end );
Created
Nov 15, 2018 at 22:15 by Rene Marczinzik
Updated
Nov 15, 2018 at 22:15 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!