Identifier
-
Mp00103:
Dyck paths
—peeling map⟶
Dyck paths
St001291: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => 1
[1,0,1,0] => [1,0,1,0] => 2
[1,1,0,0] => [1,0,1,0] => 2
[1,0,1,0,1,0] => [1,0,1,0,1,0] => 3
[1,0,1,1,0,0] => [1,0,1,0,1,0] => 3
[1,1,0,0,1,0] => [1,0,1,0,1,0] => 3
[1,1,0,1,0,0] => [1,0,1,0,1,0] => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0] => 4
[1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 5
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 5
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 5
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 6
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path.
Let A be the Nakayama algebra associated to a Dyck path as given in DyckPaths/NakayamaAlgebras. This statistics is the number of indecomposable summands of D(A)⊗D(A), where D(A) is the natural dual of A.
Let A be the Nakayama algebra associated to a Dyck path as given in DyckPaths/NakayamaAlgebras. This statistics is the number of indecomposable summands of D(A)⊗D(A), where D(A) is the natural dual of A.
Map
peeling map
Description
Send a Dyck path to its peeled Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!