Identifier
-
Mp00032:
Dyck paths
—inverse zeta map⟶
Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001294: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => 0
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => 0
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 2
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => 1
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => 2
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => 2
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => 1
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
[1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => 1
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 3
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 3
[1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => 3
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => 3
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => 4
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 4
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => 4
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => 3
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 3
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 3
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => 3
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => 3
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => 3
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 3
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => 3
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => 3
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
The number of algebras where the statistic returns a value less than or equal to 1 might be given by the Motzkin numbers oeis.org/A001006.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
The number of algebras where the statistic returns a value less than or equal to 1 might be given by the Motzkin numbers oeis.org/A001006.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!