Identifier
- St001295: Dyck paths ⟶ ℤ (values match St000012The area of a Dyck path.)
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>1
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,1,1,0,0,0,0]=>7
[1,1,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>6
[1,1,1,0,1,0,1,0,0,0]=>7
[1,1,1,0,1,1,0,0,0,0]=>8
[1,1,1,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0]=>7
[1,1,1,1,0,0,1,0,0,0]=>8
[1,1,1,1,0,1,0,0,0,0]=>9
[1,1,1,1,1,0,0,0,0,0]=>10
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,1,0,0,0]=>5
[1,0,1,0,1,1,1,1,0,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,0,1,1,0,1,0,0]=>3
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,0,1,1,0,0,0]=>5
[1,0,1,1,0,1,1,0,0,0,1,0]=>4
[1,0,1,1,0,1,1,0,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,1,0,0,0]=>6
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>3
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>4
[1,0,1,1,1,0,0,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,1,0,0,0]=>7
[1,0,1,1,1,0,1,1,0,0,0,0]=>8
[1,0,1,1,1,1,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>8
[1,0,1,1,1,1,0,1,0,0,0,0]=>9
[1,0,1,1,1,1,1,0,0,0,0,0]=>10
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,1,0,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,1,0,0,0]=>6
[1,1,0,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>5
[1,1,0,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,1,0,0]=>5
[1,1,0,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,1,0,0,0]=>7
[1,1,0,1,0,1,1,1,0,0,0,0]=>8
[1,1,0,1,1,0,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>5
[1,1,0,1,1,0,0,1,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,1,0,0,0]=>8
[1,1,0,1,1,0,1,1,0,0,0,0]=>9
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>8
[1,1,0,1,1,1,0,0,1,0,0,0]=>9
[1,1,0,1,1,1,0,1,0,0,0,0]=>10
[1,1,0,1,1,1,1,0,0,0,0,0]=>11
[1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>4
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>5
[1,1,1,0,0,0,1,1,1,0,0,0]=>6
[1,1,1,0,0,1,0,0,1,0,1,0]=>4
[1,1,1,0,0,1,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,0,1,1,0,0,0]=>7
[1,1,1,0,0,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,1,0,0,1,0,0]=>7
[1,1,1,0,0,1,1,0,1,0,0,0]=>8
[1,1,1,0,0,1,1,1,0,0,0,0]=>9
[1,1,1,0,1,0,0,0,1,0,1,0]=>5
[1,1,1,0,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>7
[1,1,1,0,1,0,0,1,1,0,0,0]=>8
[1,1,1,0,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,1,0,0,1,0,0]=>8
[1,1,1,0,1,0,1,0,1,0,0,0]=>9
[1,1,1,0,1,0,1,1,0,0,0,0]=>10
[1,1,1,0,1,1,0,0,0,0,1,0]=>8
[1,1,1,0,1,1,0,0,0,1,0,0]=>9
[1,1,1,0,1,1,0,0,1,0,0,0]=>10
[1,1,1,0,1,1,0,1,0,0,0,0]=>11
[1,1,1,0,1,1,1,0,0,0,0,0]=>12
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>7
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>8
[1,1,1,1,0,0,0,1,1,0,0,0]=>9
[1,1,1,1,0,0,1,0,0,0,1,0]=>8
[1,1,1,1,0,0,1,0,0,1,0,0]=>9
[1,1,1,1,0,0,1,0,1,0,0,0]=>10
[1,1,1,1,0,0,1,1,0,0,0,0]=>11
[1,1,1,1,0,1,0,0,0,0,1,0]=>9
[1,1,1,1,0,1,0,0,0,1,0,0]=>10
[1,1,1,1,0,1,0,0,1,0,0,0]=>11
[1,1,1,1,0,1,0,1,0,0,0,0]=>12
[1,1,1,1,0,1,1,0,0,0,0,0]=>13
[1,1,1,1,1,0,0,0,0,0,1,0]=>10
[1,1,1,1,1,0,0,0,0,1,0,0]=>11
[1,1,1,1,1,0,0,0,1,0,0,0]=>12
[1,1,1,1,1,0,0,1,0,0,0,0]=>13
[1,1,1,1,1,0,1,0,0,0,0,0]=>14
[1,1,1,1,1,1,0,0,0,0,0,0]=>15
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Code
DeclareOperation("hom1rads2", [IsList]);
InstallMethod(hom1rads2, "for a representation of a quiver", [IsList],0,function(L)
local A,RegA,J1,J2,J3;
A:=L[1];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
J1:=RadicalOfModule(RegA);
J2:=RadicalOfModule(J1);
return(Size(HomOverAlgebra(J2,J2)));
end
);
Created
Jul 20, 2018 at 18:31 by Rene Marczinzik
Updated
Jul 20, 2018 at 18:31 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!