Identifier
- St001295: Dyck paths ⟶ ℤ (values match St000012The area of a Dyck path.)
Values
[1,0] => 0
[1,0,1,0] => 0
[1,1,0,0] => 1
[1,0,1,0,1,0] => 0
[1,0,1,1,0,0] => 1
[1,1,0,0,1,0] => 1
[1,1,0,1,0,0] => 2
[1,1,1,0,0,0] => 3
[1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0] => 1
[1,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,0] => 3
[1,1,0,0,1,0,1,0] => 1
[1,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,0] => 3
[1,1,0,1,1,0,0,0] => 4
[1,1,1,0,0,0,1,0] => 3
[1,1,1,0,0,1,0,0] => 4
[1,1,1,0,1,0,0,0] => 5
[1,1,1,1,0,0,0,0] => 6
[1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,0,1,1,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,0,0] => 4
[1,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,1,1,0,0,1,0,0] => 4
[1,0,1,1,1,0,1,0,0,0] => 5
[1,0,1,1,1,1,0,0,0,0] => 6
[1,1,0,0,1,0,1,0,1,0] => 1
[1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => 2
[1,1,0,0,1,1,0,1,0,0] => 3
[1,1,0,0,1,1,1,0,0,0] => 4
[1,1,0,1,0,0,1,0,1,0] => 2
[1,1,0,1,0,0,1,1,0,0] => 3
[1,1,0,1,0,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,1,0,0] => 4
[1,1,0,1,0,1,1,0,0,0] => 5
[1,1,0,1,1,0,0,0,1,0] => 4
[1,1,0,1,1,0,0,1,0,0] => 5
[1,1,0,1,1,0,1,0,0,0] => 6
[1,1,0,1,1,1,0,0,0,0] => 7
[1,1,1,0,0,0,1,0,1,0] => 3
[1,1,1,0,0,0,1,1,0,0] => 4
[1,1,1,0,0,1,0,0,1,0] => 4
[1,1,1,0,0,1,0,1,0,0] => 5
[1,1,1,0,0,1,1,0,0,0] => 6
[1,1,1,0,1,0,0,0,1,0] => 5
[1,1,1,0,1,0,0,1,0,0] => 6
[1,1,1,0,1,0,1,0,0,0] => 7
[1,1,1,0,1,1,0,0,0,0] => 8
[1,1,1,1,0,0,0,0,1,0] => 6
[1,1,1,1,0,0,0,1,0,0] => 7
[1,1,1,1,0,0,1,0,0,0] => 8
[1,1,1,1,0,1,0,0,0,0] => 9
[1,1,1,1,1,0,0,0,0,0] => 10
[1,0,1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => 3
[1,0,1,0,1,1,0,1,1,0,0,0] => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => 4
[1,0,1,0,1,1,1,0,1,0,0,0] => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => 6
[1,0,1,1,0,0,1,0,1,0,1,0] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => 3
[1,0,1,1,0,0,1,1,1,0,0,0] => 4
[1,0,1,1,0,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,1,0,0,1,1,0,0] => 3
[1,0,1,1,0,1,0,1,0,0,1,0] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => 4
[1,0,1,1,0,1,0,1,1,0,0,0] => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => 7
[1,0,1,1,1,0,0,0,1,0,1,0] => 3
[1,0,1,1,1,0,0,0,1,1,0,0] => 4
[1,0,1,1,1,0,0,1,0,0,1,0] => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => 8
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Gives the vector space dimension of the homomorphism space between J^2 and J^2.
Code
DeclareOperation("hom1rads2", [IsList]);
InstallMethod(hom1rads2, "for a representation of a quiver", [IsList],0,function(L)
local A,RegA,J1,J2,J3;
A:=L[1];
RegA:=DirectSumOfQPAModules(IndecProjectiveModules(A));
J1:=RadicalOfModule(RegA);
J2:=RadicalOfModule(J1);
return(Size(HomOverAlgebra(J2,J2)));
end
);
Created
Jul 20, 2018 at 18:31 by Rene Marczinzik
Updated
Jul 20, 2018 at 18:31 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!