Identifier
- St001296: Dyck paths ⟶ ℤ
Values
[1,0] => 0
[1,0,1,0] => 1
[1,1,0,0] => 0
[1,0,1,0,1,0] => 2
[1,0,1,1,0,0] => 1
[1,1,0,0,1,0] => 1
[1,1,0,1,0,0] => 1
[1,1,1,0,0,0] => 0
[1,0,1,0,1,0,1,0] => 3
[1,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,0] => 1
[1,1,0,0,1,0,1,0] => 2
[1,1,0,0,1,1,0,0] => 1
[1,1,0,1,0,0,1,0] => 2
[1,1,0,1,0,1,0,0] => 2
[1,1,0,1,1,0,0,0] => 1
[1,1,1,0,0,0,1,0] => 1
[1,1,1,0,0,1,0,0] => 1
[1,1,1,0,1,0,0,0] => 1
[1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0] => 4
[1,0,1,0,1,0,1,1,0,0] => 3
[1,0,1,0,1,1,0,0,1,0] => 2
[1,0,1,0,1,1,0,1,0,0] => 3
[1,0,1,0,1,1,1,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,1,0,0,1,1,0,0] => 1
[1,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,1,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0] => 1
[1,0,1,1,1,0,0,1,0,0] => 1
[1,0,1,1,1,0,1,0,0,0] => 2
[1,0,1,1,1,1,0,0,0,0] => 1
[1,1,0,0,1,0,1,0,1,0] => 3
[1,1,0,0,1,0,1,1,0,0] => 2
[1,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,0,1,1,0,1,0,0] => 2
[1,1,0,0,1,1,1,0,0,0] => 1
[1,1,0,1,0,0,1,0,1,0] => 3
[1,1,0,1,0,0,1,1,0,0] => 2
[1,1,0,1,0,1,0,0,1,0] => 3
[1,1,0,1,0,1,0,1,0,0] => 2
[1,1,0,1,0,1,1,0,0,0] => 2
[1,1,0,1,1,0,0,0,1,0] => 1
[1,1,0,1,1,0,0,1,0,0] => 2
[1,1,0,1,1,0,1,0,0,0] => 2
[1,1,0,1,1,1,0,0,0,0] => 1
[1,1,1,0,0,0,1,0,1,0] => 2
[1,1,1,0,0,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,0,1,0] => 2
[1,1,1,0,0,1,0,1,0,0] => 2
[1,1,1,0,0,1,1,0,0,0] => 1
[1,1,1,0,1,0,0,0,1,0] => 2
[1,1,1,0,1,0,0,1,0,0] => 2
[1,1,1,0,1,0,1,0,0,0] => 2
[1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,1,0,0,0,0,1,0] => 1
[1,1,1,1,0,0,0,1,0,0] => 1
[1,1,1,1,0,0,1,0,0,0] => 1
[1,1,1,1,0,1,0,0,0,0] => 1
[1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => 3
[1,0,1,0,1,0,1,1,0,1,0,0] => 4
[1,0,1,0,1,0,1,1,1,0,0,0] => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => 3
[1,0,1,0,1,1,0,1,0,1,0,0] => 4
[1,0,1,0,1,1,0,1,1,0,0,0] => 3
[1,0,1,0,1,1,1,0,0,0,1,0] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => 3
[1,0,1,0,1,1,1,1,0,0,0,0] => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => 3
[1,0,1,1,0,0,1,0,1,1,0,0] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => 2
[1,0,1,1,0,0,1,1,1,0,0,0] => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => 3
[1,0,1,1,0,1,0,0,1,1,0,0] => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => 3
[1,0,1,1,0,1,0,1,1,0,0,0] => 3
[1,0,1,1,0,1,1,0,0,0,1,0] => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => 3
[1,0,1,1,0,1,1,1,0,0,0,0] => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => 1
[1,0,1,1,1,0,1,0,0,0,1,0] => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => 3
[1,0,1,1,1,0,1,1,0,0,0,0] => 2
>>> Load all 196 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
Code
DeclareOperation("IsNtorsionfree",[IsList]);
InstallMethod(IsNtorsionfree, "for a representation of a quiver", [IsList],0,function(LIST)
local A,M,n,CoRegA,temm23;
A:=LIST[1];
M:=LIST[2];
n:=LIST[3];
CoRegA:=DirectSumOfQPAModules(IndecInjectiveModules(A));
temm23:=[];
for i in [0..n-1] do Append(temm23,[Size(ExtOverAlgebra(NthSyzygy(CoRegA,i),DTr(M))[2])]);od;
return(Sum(temm23));
end);
DeclareOperation("torsionfreeindex",[IsList]);
InstallMethod(torsionfreeindex, "for a representation of a quiver", [IsList],0,function(LIST)
local A,M,n,CoRegA,temm23,U,g;
A:=LIST[1];
M:=LIST[2];
g:=LIST[3];
U:=Filtered([1..g],x->IsNtorsionfree([A,M,x])>0);
return(Minimum(U)-1);
end);
DeclareOperation("torsionmax",[IsList]);
InstallMethod(torsionmax, "for a representation of a quiver", [IsList],0,function(LIST)
local A,M,n,CoRegA,temm23,simA,UU,g;
A:=LIST[1];
g:=GlobalDimensionOfAlgebra(A,30);
simA:=Filtered(SimpleModules(A),x->IsProjectiveModule(x)=false);
UU:=[];for i in simA do Append(UU,[torsionfreeindex([A,i,g])]);od;
return(Maximum(UU));
end);
DeclareOperation("torsionmaxall",[IsList]);
InstallMethod(torsionmaxall, "for a representation of a quiver", [IsList],0,function(LIST)
local A,M,n,CoRegA,temm23,simA,UU,g,WW,WW2;
A:=LIST[1];
g:=GlobalDimensionOfAlgebra(A,30);
WW:=ARQuiverNak([A]);
WW2:=Filtered(WW,x->IsProjectiveModule(x)=false);
UU:=[];for i in WW2 do Append(UU,[torsionfreeindex([A,i,g])]);od;
return(Maximum(UU));
end);
Created
Nov 24, 2018 at 17:05 by Rene Marczinzik
Updated
Nov 24, 2018 at 17:05 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!