Identifier
Values
[1] => [1] => [1,0] => ([],1) => 0
[1,2] => [1,2] => [1,0,1,0] => ([(0,1)],2) => 0
[2,1] => [2,1] => [1,1,0,0] => ([(0,1)],2) => 0
[1,2,3] => [1,2,3] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 0
[1,3,2] => [1,3,2] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 0
[2,1,3] => [2,1,3] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => 0
[2,3,1] => [3,2,1] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[3,1,2] => [3,1,2] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[3,2,1] => [2,3,1] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => 0
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[1,4,3,2] => [1,3,4,2] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[2,4,3,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[3,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[3,1,4,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[3,2,1,4] => [2,3,1,4] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[3,2,4,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[3,4,1,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[3,4,2,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,1,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,2,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[4,2,3,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,3,1,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[4,3,2,1] => [2,3,4,1] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[1,2,5,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[1,2,5,4,3] => [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[1,3,5,4,2] => [1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[1,4,3,2,5] => [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,4,5,3,2] => [1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[1,5,3,2,4] => [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[1,5,4,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[1,5,4,3,2] => [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[2,1,5,3,4] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[2,1,5,4,3] => [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[2,4,3,1,5] => [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[2,4,5,3,1] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[2,5,3,1,4] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[2,5,4,3,1] => [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[3,1,2,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[3,1,2,5,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[3,2,1,4,5] => [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,2,1,5,4] => [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,4,2,1,5] => [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,5,4,2,1] => [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[4,2,1,3,5] => [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[4,3,1,2,5] => [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[4,3,2,1,5] => [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[4,5,3,1,2] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[4,5,3,2,1] => [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[5,3,1,2,4] => [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[5,3,2,1,4] => [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[5,4,2,1,3] => [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[5,4,3,1,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[5,4,3,2,1] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,3,6,5,4] => [1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,4,5,3,6] => [1,2,5,4,3,6] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,2,4,6,5,3] => [1,2,5,4,6,3] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,2,5,3,4,6] => [1,2,5,3,4,6] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,2,5,4,3,6] => [1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,6,5,3,4] => [1,2,5,3,6,4] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,2,6,5,4,3] => [1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,2,4,5,6] => [1,3,2,4,5,6] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,2,5,4,6] => [1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,2,6,5,4] => [1,3,2,5,6,4] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,4,3,2,5,6] => [1,3,4,2,5,6] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,4,3,2,6,5] => [1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,4,5,3,2,6] => [1,3,5,4,2,6] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,4,6,5,3,2] => [1,3,5,4,6,2] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,5,3,2,4,6] => [1,3,5,2,4,6] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,5,4,3,2,6] => [1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,6,5,3,2,4] => [1,3,5,2,6,4] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,6,5,4,3,2] => [1,3,4,5,6,2] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
>>> Load all 125 entries. <<<
[2,1,3,4,5,6] => [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,3,4,6,5] => [2,1,3,4,6,5] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,3,5,4,6] => [2,1,3,5,4,6] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,3,6,5,4] => [2,1,3,5,6,4] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,3,5,6] => [2,1,4,3,5,6] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,3,6,5] => [2,1,4,3,6,5] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,5,3,6] => [2,1,5,4,3,6] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[2,1,4,6,5,3] => [2,1,5,4,6,3] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[2,1,5,3,4,6] => [2,1,5,3,4,6] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[2,1,5,4,3,6] => [2,1,4,5,3,6] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,6,5,3,4] => [2,1,5,3,6,4] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[2,1,6,5,4,3] => [2,1,4,5,6,3] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[3,2,1,4,5,6] => [2,3,1,4,5,6] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[3,2,1,4,6,5] => [2,3,1,4,6,5] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[3,2,1,5,4,6] => [2,3,1,5,4,6] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[3,2,1,6,5,4] => [2,3,1,5,6,4] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[4,3,2,1,5,6] => [2,3,4,1,5,6] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[4,3,2,1,6,5] => [2,3,4,1,6,5] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[4,5,3,2,1,6] => [2,3,5,4,1,6] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[4,6,5,3,2,1] => [2,3,5,4,6,1] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[5,3,2,1,4,6] => [2,3,5,1,4,6] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[5,4,3,2,1,6] => [2,3,4,5,1,6] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[6,5,3,2,1,4] => [2,3,5,1,6,4] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[6,5,4,3,2,1] => [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The first Betti number of the order complex associated with the poset.
The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Map
left-to-right-maxima to Dyck path
Description
The left-to-right maxima of a permutation as a Dyck path.
Let $(c_1, \dots, c_k)$ be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are $c_1, c_1+c_2, \dots, c_1+\dots+c_k$.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Map
descent views to invisible inversion bottoms
Description
Return a permutation whose multiset of invisible inversion bottoms is the multiset of descent views of the given permutation.
An invisible inversion of a permutation $\sigma$ is a pair $i < j$ such that $i < \sigma(j) < \sigma(i)$. The element $\sigma(j)$ is then an invisible inversion bottom.
A descent view in a permutation $\pi$ is an element $\pi(j)$ such that $\pi(i+1) < \pi(j) < \pi(i)$, and additionally the smallest element in the decreasing run containing $\pi(i)$ is smaller than the smallest element in the decreasing run containing $\pi(j)$.
This map is a bijection $\chi:\mathfrak S_n \to \mathfrak S_n$, such that
  • the multiset of descent views in $\pi$ is the multiset of invisible inversion bottoms in $\chi(\pi)$,
  • the set of left-to-right maxima of $\pi$ is the set of maximal elements in the cycles of $\chi(\pi)$,
  • the set of global ascent of $\pi$ is the set of global ascent of $\chi(\pi)$,
  • the set of maximal elements in the decreasing runs of $\pi$ is the set of weak deficiency positions of $\chi(\pi)$, and
  • the set of minimal elements in the decreasing runs of $\pi$ is the set of weak deficiency values of $\chi(\pi)$.