Identifier
-
Mp00129:
Dyck paths
—to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶
Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001311: Graphs ⟶ ℤ
Values
[1,0] => [1] => ([],1) => ([(0,1)],2) => 0
[1,0,1,0] => [2,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 1
[1,1,0,0] => [1,2] => ([],2) => ([(0,2),(1,2)],3) => 0
[1,0,1,0,1,0] => [2,3,1] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0] => [2,1,3] => ([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,0,0,1,0] => [1,3,2] => ([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,0] => [3,1,2] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[1,1,1,0,0,0] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 0
[1,0,1,0,1,0,1,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,0,1,0,1,1,0,0] => [2,3,1,4] => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,0,1,1,0,0,1,0] => [2,1,4,3] => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2
[1,0,1,1,0,1,0,0] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,0,1,1,1,0,0,0] => [2,1,3,4] => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,0,1,0,1,0] => [1,3,4,2] => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,0,0,1,1,0,0] => [1,3,2,4] => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,1,0,0,1,0] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,0,1,0,1,0,0] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 4
[1,1,0,1,1,0,0,0] => [3,1,2,4] => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,1,0,0,0,1,0] => [1,2,4,3] => ([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 1
[1,1,1,0,0,1,0,0] => [1,4,2,3] => ([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[1,1,1,0,1,0,0,0] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[1,1,1,1,0,0,0,0] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
[1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,0,1,1,0,0,1,0] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,0,1,1,0,1,0,0] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,0,1,1,0,0,1,0,1,0] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,1,0,0,1,1,0,0] => [2,1,4,3,5] => ([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,0,0,1,0] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
[1,0,1,1,0,1,0,1,0,0] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,0,1,1,0,1,1,0,0,0] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,1,1,0,0,0,1,0] => [2,1,3,5,4] => ([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,0,1,0,0] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,0,1,1,1,0,1,0,0,0] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,0,1,0,1,0,1,0] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4] => ([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,0,1,1,0,1,0,0] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,1,0,0,1,0,1,0] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,1,0,1,0,0,1,1,0,0] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,0,1,0,1,0,0,1,0] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,1,0,1,0,1,0,1,0,0] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
[1,1,0,1,1,0,0,0,1,0] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,0,1,1,0,0,1,0,0] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
[1,1,0,1,1,0,1,0,0,0] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,0,0,1,0,1,0] => [1,2,4,5,3] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,0,1,0,0,1,0] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,0,0,1,0,1,0,0] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
[1,1,1,0,0,1,1,0,0,0] => [1,4,2,3,5] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,0,0,1,0] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,1,1,0,1,0,0,1,0,0] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,1,1,0,1,0,1,0,0,0] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 6
[1,1,1,0,1,1,0,0,0,0] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,1,0,0,0,0,1,0] => [1,2,3,5,4] => ([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,1,0,0,0,1,0,0] => [1,2,5,3,4] => ([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,1,0,0,0] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,0,1,1,0,0,1,0,1,0] => [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
[1,0,1,0,1,1,0,0,1,1,0,0] => [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,0,1,1,0,1,0,1,0,0] => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,0,1,1,1,0,0,1,0,0] => [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 4
[1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,1,4,5,6] => ([(3,5),(4,5)],6) => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,1,0,0,1,0,1,1,0,0] => [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 3
[1,0,1,1,0,0,1,1,0,1,0,0] => [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,1,0,0,1,1,1,0,0,0] => [2,1,4,3,5,6] => ([(2,5),(3,4)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,1,0,1,0,0,1,1,0,0] => [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[1,0,1,1,0,1,0,1,0,0,1,0] => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 6
[1,0,1,1,0,1,0,1,0,1,0,0] => [2,4,5,6,1,3] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 7
[1,0,1,1,0,1,0,1,1,0,0,0] => [2,4,5,1,3,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,1,0,1,1,0,0,1,0,0] => [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,1,1,0,0,0,1,1,0,0] => [2,1,3,5,4,6] => ([(2,5),(3,4)],6) => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [2,1,5,3,6,4] => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
[1,0,1,1,1,0,0,1,0,1,0,0] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 5
[1,0,1,1,1,0,0,1,1,0,0,0] => [2,1,5,3,4,6] => ([(1,2),(3,5),(4,5)],6) => ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[1,0,1,1,1,0,1,0,0,0,1,0] => [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[1,0,1,1,1,0,1,0,0,1,0,0] => [2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,0,1,1,1,0,1,0,1,0,0,0] => [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,0,1,1,1,0,1,1,0,0,0,0] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 4
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The cyclomatic number of a graph.
This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as $c + m - n$, where $c$ is the number of connected components, $m$ is the number of edges and $n$ is the number of vertices.
This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as $c + m - n$, where $c$ is the number of connected components, $m$ is the number of edges and $n$ is the number of vertices.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!