Identifier
Values
[1,0] => [1,0] => ([],1) => ([],1) => 0
[1,0,1,0] => [1,0,1,0] => ([(0,1)],2) => ([],2) => 0
[1,1,0,0] => [1,1,0,0] => ([(0,1)],2) => ([],2) => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,0,1,1,0,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,1,0,0,1,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,1,0,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => ([],3) => 0
[1,1,1,0,0,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 0
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 0
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
[1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 0
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 0
[1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 0
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 0
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => 1
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
[1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 0
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 0
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 0
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
>>> Load all 187 entries. <<<
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 0
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph.
A graph is a split graph if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,b)$ is an edge and $(b,c)$ is not an edge. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.