Identifier
-
Mp00032:
Dyck paths
—inverse zeta map⟶
Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001330: Graphs ⟶ ℤ
Values
[1,0] => [1,0] => ([],1) => ([],1) => 1
[1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => ([(0,1)],2) => 2
[1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => ([(0,1)],2) => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
[1,1,0,0,1,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
[1,1,0,1,0,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,1,0,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
>>> Load all 256 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!