Identifier
Values
0 => ([(0,1)],2) => ([(0,1)],2) => 2
1 => ([(0,1)],2) => ([(0,1)],2) => 2
00 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
11 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
000 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
111 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 2
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
0000000 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8) => 2
1111111 => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that $u < v$ if and only if $u$ is a factor of $v$.