Identifier
Values
[1,0] => [1,0] => [1] => ([],1) => 1
[1,0,1,0] => [1,1,0,0] => [1,2] => ([],2) => 1
[1,1,0,0] => [1,0,1,0] => [2,1] => ([(0,1)],2) => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,2,3] => ([],3) => 1
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [2,1,3] => ([(1,2)],3) => 2
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [3,1,2] => ([(0,2),(1,2)],3) => 2
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,3,2] => ([(1,2)],3) => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [2,3,1] => ([(0,2),(1,2)],3) => 2
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => ([],4) => 1
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [2,1,3,4] => ([(2,3)],4) => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [3,1,2,4] => ([(1,3),(2,3)],4) => 2
[1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,3,2,4] => ([(2,3)],4) => 2
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [2,3,1,4] => ([(1,3),(2,3)],4) => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 2
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,4,2,3] => ([(1,3),(2,3)],4) => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,2,4,3] => ([(2,3)],4) => 2
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [2,1,4,3] => ([(0,3),(1,2)],4) => 2
[1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4) => 2
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,3,4,2] => ([(1,3),(2,3)],4) => 2
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => ([],5) => 1
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => ([(3,4)],5) => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => ([(2,4),(3,4)],5) => 2
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,3,2,4,5] => ([(3,4)],5) => 2
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => ([(2,4),(3,4)],5) => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5) => 2
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,4,2,3,5] => ([(2,4),(3,4)],5) => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,2,4,3,5] => ([(3,4)],5) => 2
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [2,1,4,3,5] => ([(1,4),(2,3)],5) => 2
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5) => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5) => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,3,4,2,5] => ([(2,4),(3,4)],5) => 2
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5) => 2
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5) => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,2,5,3,4] => ([(2,4),(3,4)],5) => 2
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,2,3,5,4] => ([(3,4)],5) => 2
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [2,1,3,5,4] => ([(1,4),(2,3)],5) => 2
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5) => 2
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5) => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,3,2,5,4] => ([(1,4),(2,3)],5) => 2
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5) => 2
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5) => 2
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5) => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,2,4,5,3] => ([(2,4),(3,4)],5) => 2
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5) => 2
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5) => 2
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => ([],6) => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,1,3,4,5,6] => ([(4,5)],6) => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6) => 2
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,4,5,6] => ([(4,5)],6) => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,1,4,5,6] => ([(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,4,2,3,5,6] => ([(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,2,4,3,5,6] => ([(4,5)],6) => 2
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [2,1,4,3,5,6] => ([(2,5),(3,4)],6) => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [3,1,4,2,5,6] => ([(2,5),(3,4),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,4,2,5,6] => ([(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,4,5,2,3,6] => ([(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,5,2,3,4,6] => ([(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,2,5,3,4,6] => ([(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,2,3,5,4,6] => ([(4,5)],6) => 2
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [2,1,3,5,4,6] => ([(2,5),(3,4)],6) => 2
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [2,1,5,3,4,6] => ([(1,2),(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,1,0,0] => [3,1,2,5,4,6] => ([(1,2),(3,5),(4,5)],6) => 2
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,3,2,5,4,6] => ([(2,5),(3,4)],6) => 2
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [3,1,5,2,4,6] => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,0] => [4,1,2,5,3,6] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6) => 2
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,1,0,0] => [1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6) => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,2,4,5,3,6] => ([(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6) => 2
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => [3,1,4,5,2,6] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,2,5,6,3,4] => ([(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => [2,1,5,6,3,4] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,6,2,3,4,5] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,2,6,3,4,5] => ([(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,2,3,6,4,5] => ([(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,2,3,4,6,5] => ([(4,5)],6) => 2
>>> Load all 248 entries. <<<
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [2,1,3,4,6,5] => ([(2,5),(3,4)],6) => 2
[1,1,0,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [2,1,3,6,4,5] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [3,1,2,4,6,5] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,4,6,5] => ([(2,5),(3,4)],6) => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,0,0,1,0,1,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => [2,1,6,3,4,5] => ([(0,1),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [3,1,2,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6) => 2
[1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [4,1,2,3,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [3,4,1,2,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 3
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [1,3,2,6,4,5] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0,1,0] => [1,4,2,3,6,5] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,2,4,3,6,5] => ([(2,5),(3,4)],6) => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6) => 2
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6) => 2
[1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6) => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => [3,1,4,2,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6) => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,1,0,0,0] => [1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => [1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [2,1,5,3,6,4] => ([(0,1),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [3,1,2,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6) => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6) => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6) => 2
[1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => [1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => [1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [2,1,4,5,6,3] => ([(0,1),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,0,0,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,1,0,0,0,0] => [3,1,7,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[1,1,1,0,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[1,1,1,0,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0] => [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[1,1,1,1,0,0,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,1,1,0,0,1,0,0,0] => [2,4,1,7,3,5,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[1,1,1,1,0,0,0,1,0,1,0,0,1,0] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [2,5,1,3,7,4,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0] => [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,1,0,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,1,0,1,0,0,0] => [3,1,4,7,2,5,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [3,1,5,2,7,4,6] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0] => [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,0,0,1,0,1,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,1,0,1,0,0] => [4,1,2,5,7,3,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0,1,0] => [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0] => [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[1,1,1,1,1,0,0,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [2,3,5,1,7,4,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,0,0,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [2,4,1,6,3,7,5] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,0,1,0,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0,1,0] => [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0] => [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [2,8,1,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0] => [3,1,8,2,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0] => [4,1,2,8,3,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0] => [5,1,2,3,8,4,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0] => [6,1,2,3,4,8,5,7] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0] => [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [2,3,8,1,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0] => [2,4,1,8,3,5,6,7] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0] => [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [2,5,1,3,8,4,6,7] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0] => [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0] => [2,6,1,3,4,8,5,7] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [2,7,1,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0] => [1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0] => [3,1,4,8,2,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,0] => [3,1,5,2,8,4,6,7] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0] => [3,1,6,2,4,8,5,7] => ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8) => 2
[1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0] => [3,1,7,2,4,5,8,6] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0] => [4,1,2,5,8,3,6,7] => ([(0,6),(1,6),(2,5),(3,5),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0] => [4,1,2,6,3,8,5,7] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0] => [4,1,2,7,3,5,8,6] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,0,1,1,0,1,0,0] => [5,1,2,3,6,8,4,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,0,1,0,0,1,0] => [5,1,2,3,7,4,8,6] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0] => [6,1,2,3,4,7,8,5] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [2,3,4,8,1,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0] => [2,3,5,1,8,4,6,7] => ([(0,6),(1,6),(2,7),(3,7),(4,5),(4,7),(5,6)],8) => 2
[1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [2,3,6,1,4,8,5,7] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0] => [2,3,7,1,4,5,8,6] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,1,1,0,1,0,0,0] => [2,4,1,5,8,3,6,7] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [2,4,1,6,3,8,5,7] => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0] => [2,4,1,7,3,5,8,6] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0,1,1,0,1,0,0] => [2,5,1,3,6,8,4,7] => ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0,1,0] => [2,5,1,3,7,4,8,6] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0] => [2,6,1,3,4,7,8,5] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0] => [3,1,4,5,8,2,6,7] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,1,1,0,0,1,0,0] => [3,1,4,6,2,8,5,7] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,1,1,0,1,0,0,0,1,0] => [3,1,4,7,2,5,8,6] => ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0] => [3,1,5,2,6,8,4,7] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0] => [3,1,5,2,7,4,8,6] => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,0] => [3,1,6,2,4,7,8,5] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0] => [4,1,2,5,6,8,3,7] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,1,0,1,0,0,1,0] => [4,1,2,5,7,3,8,6] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0] => [4,1,2,6,3,7,8,5] => ([(0,6),(1,6),(2,7),(3,7),(4,5),(4,7),(5,6)],8) => 2
[1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0] => [5,1,2,3,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,4,5,8,1,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [2,3,4,6,1,8,5,7] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [2,3,4,7,1,5,8,6] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [2,3,5,1,6,8,4,7] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [2,3,5,1,7,4,8,6] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0] => [2,3,6,1,4,7,8,5] => ([(0,6),(1,6),(2,5),(3,5),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [2,4,1,5,6,8,3,7] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [2,4,1,5,7,3,8,6] => ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8) => 2
[1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0] => [2,4,1,6,3,7,8,5] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0] => [2,5,1,3,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0] => [3,1,4,5,6,8,2,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0] => [3,1,4,5,7,2,8,6] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0] => [3,1,4,6,2,7,8,5] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0] => [3,1,5,2,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0] => [4,1,2,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,5,6,8,1,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [2,3,4,5,7,1,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [2,3,4,6,1,7,8,5] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [2,3,5,1,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [2,4,1,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0] => [3,1,4,5,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,7,8,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
  • First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
    For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
    $$NE\ NNEE\ NNNNEEEE\ NE.$$
  • Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
    The complete path we obtain in thus
    $$NENNENNNENEEENEE.$$