Identifier
Values
[.,.] => [1,0] => [2,1] => ([(0,1)],2) => 2
[.,[.,.]] => [1,1,0,0] => [2,3,1] => ([(0,2),(1,2)],3) => 2
[[.,.],.] => [1,0,1,0] => [3,1,2] => ([(0,2),(1,2)],3) => 2
[.,[.,[.,.]]] => [1,1,1,0,0,0] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 2
[[.,.],[.,.]] => [1,0,1,1,0,0] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],.] => [1,1,0,0,1,0] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],.],.] => [1,0,1,0,1,0] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 2
[.,[.,[.,[.,.]]]] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[[.,.],[.,[.,.]]] => [1,0,1,1,1,0,0,0] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[.,[.,.]],[.,.]] => [1,1,0,0,1,1,0,0] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,.],.],[.,.]] => [1,0,1,0,1,1,0,0] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[.,[.,[.,.]]],.] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[.,.],[.,.]],.] => [1,0,1,1,0,0,1,0] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
[[[.,[.,.]],.],.] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5) => 2
[[[[.,.],.],.],.] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[.,[.,[.,[.,[.,.]]]]] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[[.,.],[.,[.,[.,.]]]] => [1,0,1,1,1,1,0,0,0,0] => [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[.,[.,.]],[.,[.,.]]] => [1,1,0,0,1,1,1,0,0,0] => [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[[[.,.],.],[.,[.,.]]] => [1,0,1,0,1,1,1,0,0,0] => [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[[.,[.,[.,.]]],[.,.]] => [1,1,1,0,0,0,1,1,0,0] => [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[[[.,.],[.,.]],[.,.]] => [1,0,1,1,0,0,1,1,0,0] => [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[[[.,[.,.]],.],[.,.]] => [1,1,0,0,1,0,1,1,0,0] => [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[[.,.],.],.],[.,.]] => [1,0,1,0,1,0,1,1,0,0] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[.,[.,[.,[.,.]]]],.] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[.,.],[.,[.,.]]],.] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
[[[.,[.,.]],[.,.]],.] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 2
[[[[.,.],.],[.,.]],.] => [1,0,1,0,1,1,0,0,1,0] => [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[[[.,[.,[.,.]]],.],.] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
[[[[.,.],[.,.]],.],.] => [1,0,1,1,0,0,1,0,1,0] => [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
[[[[.,[.,.]],.],.],.] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
[[[[[.,.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[.,[.,[.,[.,[.,[.,.]]]]]] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[[.,.],[.,[.,[.,[.,.]]]]] => [1,0,1,1,1,1,1,0,0,0,0,0] => [3,1,4,5,6,7,2] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[.,[.,.]],[.,[.,[.,.]]]] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4,1,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[[[.,.],.],[.,[.,[.,.]]]] => [1,0,1,0,1,1,1,1,0,0,0,0] => [4,1,2,5,6,7,3] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[.,[.,[.,.]]],[.,[.,.]]] => [1,1,1,0,0,0,1,1,1,0,0,0] => [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[[[.,.],[.,.]],[.,[.,.]]] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,1,5,2,6,7,4] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[[[.,[.,.]],.],[.,[.,.]]] => [1,1,0,0,1,0,1,1,1,0,0,0] => [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[[[[.,.],.],.],[.,[.,.]]] => [1,0,1,0,1,0,1,1,1,0,0,0] => [5,1,2,3,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[.,[.,[.,[.,.]]]],[.,.]] => [1,1,1,1,0,0,0,0,1,1,0,0] => [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[[[.,.],[.,[.,.]]],[.,.]] => [1,0,1,1,1,0,0,0,1,1,0,0] => [3,1,4,6,2,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[[[.,[.,.]],[.,.]],[.,.]] => [1,1,0,0,1,1,0,0,1,1,0,0] => [2,4,1,6,3,7,5] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[[[[.,.],.],[.,.]],[.,.]] => [1,0,1,0,1,1,0,0,1,1,0,0] => [4,1,2,6,3,7,5] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[[[.,[.,[.,.]]],.],[.,.]] => [1,1,1,0,0,0,1,0,1,1,0,0] => [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[[[[.,.],[.,.]],.],[.,.]] => [1,0,1,1,0,0,1,0,1,1,0,0] => [3,1,6,2,4,7,5] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[[[[.,[.,.]],.],.],[.,.]] => [1,1,0,0,1,0,1,0,1,1,0,0] => [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2
[[[[[.,.],.],.],.],[.,.]] => [1,0,1,0,1,0,1,0,1,1,0,0] => [6,1,2,3,4,7,5] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[.,[.,[.,[.,[.,.]]]]],.] => [1,1,1,1,1,0,0,0,0,0,1,0] => [2,3,4,5,7,1,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[[.,.],[.,[.,[.,.]]]],.] => [1,0,1,1,1,1,0,0,0,0,1,0] => [3,1,4,5,7,2,6] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2
[[[.,[.,.]],[.,[.,.]]],.] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,4,1,5,7,3,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[[[[.,.],.],[.,[.,.]]],.] => [1,0,1,0,1,1,1,0,0,0,1,0] => [4,1,2,5,7,3,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[[[.,[.,[.,.]]],[.,.]],.] => [1,1,1,0,0,0,1,1,0,0,1,0] => [2,3,5,1,7,4,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[[[[.,.],[.,.]],[.,.]],.] => [1,0,1,1,0,0,1,1,0,0,1,0] => [3,1,5,2,7,4,6] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 2
[[[[.,[.,.]],.],[.,.]],.] => [1,1,0,0,1,0,1,1,0,0,1,0] => [2,5,1,3,7,4,6] => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2
[[[[[.,.],.],.],[.,.]],.] => [1,0,1,0,1,0,1,1,0,0,1,0] => [5,1,2,3,7,4,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[[[.,[.,[.,[.,.]]]],.],.] => [1,1,1,1,0,0,0,0,1,0,1,0] => [2,3,4,7,1,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[[[.,.],[.,[.,.]]],.],.] => [1,0,1,1,1,0,0,0,1,0,1,0] => [3,1,4,7,2,5,6] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2
[[[[.,[.,.]],[.,.]],.],.] => [1,1,0,0,1,1,0,0,1,0,1,0] => [2,4,1,7,3,5,6] => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2
[[[[[.,.],.],[.,.]],.],.] => [1,0,1,0,1,1,0,0,1,0,1,0] => [4,1,2,7,3,5,6] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2
[[[[.,[.,[.,.]]],.],.],.] => [1,1,1,0,0,0,1,0,1,0,1,0] => [2,3,7,1,4,5,6] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2
[[[[[.,.],[.,.]],.],.],.] => [1,0,1,1,0,0,1,0,1,0,1,0] => [3,1,7,2,4,5,6] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2
[[[[[.,[.,.]],.],.],.],.] => [1,1,0,0,1,0,1,0,1,0,1,0] => [2,7,1,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2
[[[[[[.,.],.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0,1,0] => [7,1,2,3,4,5,6] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[.,[.,[.,[.,[.,[.,[.,.]]]]]]] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[[.,.],[.,[.,[.,[.,[.,.]]]]]] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [3,1,4,5,6,7,8,2] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[[.,[.,.]],[.,[.,[.,[.,.]]]]] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [2,4,1,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[[[.,.],.],[.,[.,[.,[.,.]]]]] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [4,1,2,5,6,7,8,3] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[.,[.,[.,.]]],[.,[.,[.,.]]]] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [2,3,5,1,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[[[.,.],[.,.]],[.,[.,[.,.]]]] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [3,1,5,2,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[[[.,[.,.]],.],[.,[.,[.,.]]]] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [2,5,1,3,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[[[[.,.],.],.],[.,[.,[.,.]]]] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [5,1,2,3,6,7,8,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8) => 2
[[.,[.,[.,[.,.]]]],[.,[.,.]]] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [2,3,4,6,1,7,8,5] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[[[.,.],[.,[.,.]]],[.,[.,.]]] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [3,1,4,6,2,7,8,5] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[[[.,[.,.]],[.,.]],[.,[.,.]]] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0] => [2,4,1,6,3,7,8,5] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[[[[.,.],.],[.,.]],[.,[.,.]]] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [4,1,2,6,3,7,8,5] => ([(0,6),(1,6),(2,7),(3,7),(4,5),(4,7),(5,6)],8) => 2
[[[.,[.,[.,.]]],.],[.,[.,.]]] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0] => [2,3,6,1,4,7,8,5] => ([(0,6),(1,6),(2,5),(3,5),(4,7),(5,7),(6,7)],8) => 2
[[[[.,.],[.,.]],.],[.,[.,.]]] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [3,1,6,2,4,7,8,5] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[[[[.,[.,.]],.],.],[.,[.,.]]] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [2,6,1,3,4,7,8,5] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[[[[[.,.],.],.],.],[.,[.,.]]] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [6,1,2,3,4,7,8,5] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[.,[.,[.,[.,[.,.]]]]],[.,.]] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [2,3,4,5,7,1,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[[[.,.],[.,[.,[.,.]]]],[.,.]] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [3,1,4,5,7,2,8,6] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[[[.,[.,.]],[.,[.,.]]],[.,.]] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0] => [2,4,1,5,7,3,8,6] => ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8) => 2
[[[[.,.],.],[.,[.,.]]],[.,.]] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [4,1,2,5,7,3,8,6] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[[[.,[.,[.,.]]],[.,.]],[.,.]] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0] => [2,3,5,1,7,4,8,6] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[[[[.,.],[.,.]],[.,.]],[.,.]] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [3,1,5,2,7,4,8,6] => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8) => 2
[[[[.,[.,.]],.],[.,.]],[.,.]] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [2,5,1,3,7,4,8,6] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[[[[[.,.],.],.],[.,.]],[.,.]] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [5,1,2,3,7,4,8,6] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[[[.,[.,[.,[.,.]]]],.],[.,.]] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0] => [2,3,4,7,1,5,8,6] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[[[[.,.],[.,[.,.]]],.],[.,.]] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0] => [3,1,4,7,2,5,8,6] => ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8) => 2
[[[[.,[.,.]],[.,.]],.],[.,.]] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [2,4,1,7,3,5,8,6] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[[[[[.,.],.],[.,.]],.],[.,.]] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [4,1,2,7,3,5,8,6] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[[[[.,[.,[.,.]]],.],.],[.,.]] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0] => [2,3,7,1,4,5,8,6] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[[[[[.,.],[.,.]],.],.],[.,.]] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [3,1,7,2,4,5,8,6] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[[[[[.,[.,.]],.],.],.],[.,.]] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [2,7,1,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => 2
[[[[[[.,.],.],.],.],.],[.,.]] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [7,1,2,3,4,5,8,6] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[[.,[.,[.,[.,[.,[.,.]]]]]],.] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [2,3,4,5,6,8,1,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[[[.,.],[.,[.,[.,[.,.]]]]],.] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [3,1,4,5,6,8,2,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8) => 2
[[[.,[.,.]],[.,[.,[.,.]]]],.] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [2,4,1,5,6,8,3,7] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[[[[.,.],.],[.,[.,[.,.]]]],.] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [4,1,2,5,6,8,3,7] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[[[.,[.,[.,.]]],[.,[.,.]]],.] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0] => [2,3,5,1,6,8,4,7] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[[[[.,.],[.,.]],[.,[.,.]]],.] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [3,1,5,2,6,8,4,7] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
>>> Load all 127 entries. <<<
[[[[.,[.,.]],.],[.,[.,.]]],.] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0] => [2,5,1,3,6,8,4,7] => ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7),(6,7)],8) => 2
[[[[[.,.],.],.],[.,[.,.]]],.] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [5,1,2,3,6,8,4,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[[[.,[.,[.,[.,.]]]],[.,.]],.] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => [2,3,4,6,1,8,5,7] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[[[[.,.],[.,[.,.]]],[.,.]],.] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0] => [3,1,4,6,2,8,5,7] => ([(0,6),(1,5),(2,7),(3,4),(3,5),(4,7),(6,7)],8) => 2
[[[[.,[.,.]],[.,.]],[.,.]],.] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,8,5,7] => ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8) => 2
[[[[[.,.],.],[.,.]],[.,.]],.] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [4,1,2,6,3,8,5,7] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[[[[.,[.,[.,.]]],.],[.,.]],.] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0] => [2,3,6,1,4,8,5,7] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[[[[[.,.],[.,.]],.],[.,.]],.] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [3,1,6,2,4,8,5,7] => ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8) => 2
[[[[[.,[.,.]],.],.],[.,.]],.] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [2,6,1,3,4,8,5,7] => ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,6),(6,7)],8) => 2
[[[[[[.,.],.],.],.],[.,.]],.] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [6,1,2,3,4,8,5,7] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[[[.,[.,[.,[.,[.,.]]]]],.],.] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [2,3,4,5,8,1,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[[[.,.],[.,[.,[.,.]]]],.],.] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [3,1,4,5,8,2,6,7] => ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8) => 2
[[[[.,[.,.]],[.,[.,.]]],.],.] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [2,4,1,5,8,3,6,7] => ([(0,7),(1,6),(2,6),(3,5),(4,5),(4,7),(6,7)],8) => 2
[[[[[.,.],.],[.,[.,.]]],.],.] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [4,1,2,5,8,3,6,7] => ([(0,6),(1,6),(2,5),(3,5),(4,7),(5,7),(6,7)],8) => 2
[[[[.,[.,[.,.]]],[.,.]],.],.] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0] => [2,3,5,1,8,4,6,7] => ([(0,6),(1,6),(2,7),(3,7),(4,5),(4,7),(5,6)],8) => 2
[[[[[.,.],[.,.]],[.,.]],.],.] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [3,1,5,2,8,4,6,7] => ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8) => 2
[[[[[.,[.,.]],.],[.,.]],.],.] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [2,5,1,3,8,4,6,7] => ([(0,7),(1,6),(2,6),(3,4),(4,7),(5,6),(5,7)],8) => 2
[[[[[[.,.],.],.],[.,.]],.],.] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [5,1,2,3,8,4,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[[[[.,[.,[.,[.,.]]]],.],.],.] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [2,3,4,8,1,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8) => 2
[[[[[.,.],[.,[.,.]]],.],.],.] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [3,1,4,8,2,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,6),(6,7)],8) => 2
[[[[[.,[.,.]],[.,.]],.],.],.] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [2,4,1,8,3,5,6,7] => ([(0,7),(1,7),(2,7),(3,4),(4,6),(5,6),(5,7)],8) => 2
[[[[[[.,.],.],[.,.]],.],.],.] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [4,1,2,8,3,5,6,7] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8) => 2
[[[[[.,[.,[.,.]]],.],.],.],.] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [2,3,8,1,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => 2
[[[[[[.,.],[.,.]],.],.],.],.] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [3,1,8,2,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8) => 2
[[[[[[.,[.,.]],.],.],.],.],.] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [2,8,1,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8) => 2
[[[[[[[.,.],.],.],.],.],.],.] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [8,1,2,3,4,5,6,7] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
to Tamari-corresponding Dyck path
Description
Return the Dyck path associated with a binary tree in consistency with the Tamari order on Dyck words and binary trees.
The bijection is defined recursively as follows:
  • a leaf is associated with an empty Dyck path,
  • a tree with children $l,r$ is associated with the Dyck word $T(l) 1 T(r) 0$ where $T(l)$ and $T(r)$ are the images of this bijection to $l$ and $r$.