Identifier
Values
[1] => [1] => ([],1) => ([(0,1)],2) => 2
[-1] => [1] => ([],1) => ([(0,1)],2) => 2
[1,2] => [1,2] => ([],2) => ([(0,2),(1,2)],3) => 2
[1,-2] => [1,2] => ([],2) => ([(0,2),(1,2)],3) => 2
[-1,2] => [1,2] => ([],2) => ([(0,2),(1,2)],3) => 2
[-1,-2] => [1,2] => ([],2) => ([(0,2),(1,2)],3) => 2
[2,1] => [2,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 3
[2,-1] => [2,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 3
[-2,1] => [2,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 3
[-2,-1] => [2,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[1,2,-3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[1,-2,3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[1,-2,-3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[-1,2,3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[-1,2,-3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[-1,-2,3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[-1,-2,-3] => [1,2,3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,-2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,-2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[-3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[-3,2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[-3,-2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[-3,-2,-1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,2,3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,2,-3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,2,-3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,-2,3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,-2,3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,-2,-3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,-2,-3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,2,3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,2,3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,2,-3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,2,-3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,-2,3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,-2,3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,-2,-3,4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[-1,-2,-3,-4] => [1,2,3,4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,3,2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,3,-2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,3,-2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-3,2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-3,-2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[4,-3,-2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,3,2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,3,-2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,3,-2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,-3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,-3,2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,-3,-2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[-4,-3,-2,-1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,2,3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,-3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,-3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,-3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,2,-3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,-3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,-3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,-3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,-2,-3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,-3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,-3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,-3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,2,-3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,-3,4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,-3,4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,-3,-4,5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[-1,-2,-3,-4,-5] => [1,2,3,4,5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,-3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,-3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,-3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,4,-3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
>>> Load all 125 entries. <<<
[5,-4,3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,-3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,-3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,-3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[5,-4,-3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,4,-3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,-3,2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,-3,2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,-3,-2,1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[-5,-4,-3,-2,-1] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[-6,-5,-4,-3,-2,1] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[-7,-6,-5,-4,-3,-2,1] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
permutation
Description
The permutation obtained by forgetting the colours.