Identifier
Values
[] => ([],1) => ([],1) => ([],1) => 1
[[]] => ([(0,1)],2) => ([],2) => ([],1) => 1
[[],[]] => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(1,2)],3) => 2
[[[]]] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 1
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => ([(1,2)],3) => 2
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => ([(1,2)],3) => 2
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => ([(2,3)],4) => ([(1,2)],3) => 2
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(1,2)],3) => 2
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2)],3) => 2
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(1,2)],3) => 2
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => 3
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(2,4),(3,4)],5) => ([(1,2)],3) => 2
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(2,4),(3,4)],5) => ([(1,2)],3) => 2
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(3,4)],5) => ([(1,2)],3) => 2
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => 2
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => 2
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => 2
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => 2
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => 2
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => ([(1,2)],3) => 2
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(2,5),(3,5),(4,5)],6) => ([(1,2)],3) => 2
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => ([(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(3,5),(4,5)],6) => ([(1,2)],3) => 2
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(3,5),(4,5)],6) => ([(1,2)],3) => 2
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(4,5)],6) => ([(1,2)],3) => 2
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[[[[]]]]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[]],[[[]]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[[[]]],[[]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[[[]]]],[]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[],[[[[[]]]]]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[]],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[]],[],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[]],[],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[]],[],[[[]]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[]],[[]],[],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[]],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[]],[[[]]],[]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[]],[[[[]]]]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => 2
[[[[]]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[[]]],[],[[]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[]]],[[]],[]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[]]],[[[]]]] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(1,2)],3) => 2
[[[[[]]]],[],[]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[[]]]],[[]]] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => 2
[[[[[[]]]]],[]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[],[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(6,5)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[[],[],[],[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[],[],[[]],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[],[],[[[]]]]] => ([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[],[[]],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[],[[]],[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[],[[[]]],[]]] => ([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[],[[[[]]]]]] => ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[[]],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[[]],[],[[]]]] => ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[]],[[]],[]]] => ([(0,6),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[]],[[[]]]]] => ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => 2
[[[[[]]],[],[]]] => ([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[[]]],[[]]]] => ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => 2
[[[[[[]]]],[]]] => ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[[],[],[],[]]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,4)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[[[],[],[[]]]]] => ([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[],[[]],[]]]] => ([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[],[[[]]]]]] => ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => ([(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[[[]],[],[]]]] => ([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[[]],[[]]]]] => ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2)],3) => 2
[[[[[[]]],[]]]] => ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => ([(3,6),(4,6),(5,6)],7) => ([(1,2)],3) => 2
>>> Load all 106 entries. <<<
[[[[[],[],[]]]]] => ([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) => ([(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => 3
[[[[[],[[]]]]]] => ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7) => ([(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[[[[]],[]]]]] => ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7) => ([(4,6),(5,6)],7) => ([(1,2)],3) => 2
[[[[[[],[]]]]]] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => ([(5,6)],7) => ([(1,2)],3) => 2
[[[[[[[]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.