Identifier
Values
[] => ([],1) => ([],1) => 1
[[]] => ([(0,1)],2) => ([],2) => 2
[[],[]] => ([(0,2),(1,2)],3) => ([(1,2)],3) => 2
[[[]]] => ([(0,2),(2,1)],3) => ([],3) => 3
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => 2
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 3
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => 3
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => ([(2,3)],4) => 3
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 4
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 4
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => 4
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => ([(2,3),(2,4),(3,4)],5) => 3
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(2,4),(3,4)],5) => 4
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(2,4),(3,4)],5) => 4
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(3,4)],5) => 4
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 5
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 5
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 3
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 4
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => 5
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(2,5),(3,5),(4,5)],6) => 5
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => 4
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => 4
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(2,5),(3,5),(4,5)],6) => 5
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => ([(3,4),(3,5),(4,5)],6) => 4
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(3,5),(4,5)],6) => 5
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(3,5),(4,5)],6) => 5
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(4,5)],6) => 5
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 6
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[[[[]]]]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
[[],[[]],[[[]]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3
[[],[[[]]],[[]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[[],[[]]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[]],[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[[]]]],[]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[],[]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[],[[[]]]]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 4
[[],[[[],[]],[]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
This is the maximum cardinality of a minimal dominating set of $G$.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!