Identifier
Values
([],1) => ([],1) => ([],1) => ([],2) => 1
([],2) => ([],2) => ([],2) => ([],3) => 2
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => ([(1,2)],3) => 1
([],3) => ([],3) => ([],3) => ([],4) => 3
([(1,2)],3) => ([(1,2)],3) => ([(1,2)],3) => ([(2,3)],4) => 2
([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => ([(1,3),(2,3)],4) => 1
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 1
([],4) => ([],4) => ([],4) => ([],5) => 4
([(2,3)],4) => ([(2,3)],4) => ([(2,3)],4) => ([(3,4)],5) => 3
([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => ([(2,4),(3,4)],5) => 2
([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(1,4),(2,4),(3,4)],5) => 1
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 2
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([],5) => ([],5) => ([],5) => ([],6) => 5
([(3,4)],5) => ([(3,4)],5) => ([(3,4)],5) => ([(4,5)],6) => 4
([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => ([(3,5),(4,5)],6) => 3
([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,5),(4,5)],6) => 1
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 3
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 3
([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,4),(3,4)],5) => ([(1,2),(3,5),(4,5)],6) => 2
([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => ([(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([],6) => ([],6) => ([],6) => ([],7) => 6
([(4,5)],6) => ([(4,5)],6) => ([(4,5)],6) => ([(5,6)],7) => 5
([(3,5),(4,5)],6) => ([(3,5),(4,5)],6) => ([(3,5),(4,5)],6) => ([(4,6),(5,6)],7) => 4
([(2,5),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => ([(3,6),(4,6),(5,6)],7) => 3
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 1
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => ([(3,6),(4,5)],7) => 4
([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => ([(3,6),(4,5),(5,6)],7) => 4
([(1,2),(3,5),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => ([(2,3),(4,6),(5,6)],7) => 3
([(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(4,5)],6) => ([(4,5),(4,6),(5,6)],7) => 4
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(3,6),(4,6),(5,6)],7) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(1,6),(2,6),(3,5),(4,5)],7) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => ([(1,6),(2,5),(3,4)],7) => 3
([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 3
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,2),(3,6),(4,5),(5,6)],7) => 3
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => ([(2,3),(4,5),(4,6),(5,6)],7) => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2
>>> Load all 163 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The cardinality of a minimal non-edge isolating set of a graph.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with two isolated vertices.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with two isolated vertices.
Map
connected complement
Description
The componentwise connected complement of a graph.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
For a connected graph $G$, this map returns the complement of $G$ if it is connected, otherwise $G$ itself. If $G$ is not connected, the map is applied to each connected component separately.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.
Map
Ore closure
Description
The Ore closure of a graph.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!