Identifier
Values
[[],[]] => [.,[.,.]] => [2,1] => [1,2] => 2
[[[]]] => [[.,.],.] => [1,2] => [2,1] => 1
[[],[],[]] => [.,[.,[.,.]]] => [3,2,1] => [1,2,3] => 6
[[],[[]]] => [.,[[.,.],.]] => [2,3,1] => [1,3,2] => 2
[[[]],[]] => [[.,.],[.,.]] => [1,3,2] => [2,3,1] => 2
[[[],[]]] => [[.,[.,.]],.] => [2,1,3] => [3,1,2] => 2
[[[[]]]] => [[[.,.],.],.] => [1,2,3] => [3,2,1] => 1
[[],[],[],[]] => [.,[.,[.,[.,.]]]] => [4,3,2,1] => [1,2,3,4] => 24
[[],[],[[]]] => [.,[.,[[.,.],.]]] => [3,4,2,1] => [1,2,4,3] => 6
[[],[[]],[]] => [.,[[.,.],[.,.]]] => [2,4,3,1] => [1,3,4,2] => 4
[[],[[],[]]] => [.,[[.,[.,.]],.]] => [3,2,4,1] => [1,4,2,3] => 6
[[],[[[]]]] => [.,[[[.,.],.],.]] => [2,3,4,1] => [1,4,3,2] => 2
[[[]],[],[]] => [[.,.],[.,[.,.]]] => [1,4,3,2] => [2,3,4,1] => 6
[[[]],[[]]] => [[.,.],[[.,.],.]] => [1,3,4,2] => [2,4,3,1] => 2
[[[],[]],[]] => [[.,[.,.]],[.,.]] => [2,1,4,3] => [3,4,1,2] => 4
[[[[]]],[]] => [[[.,.],.],[.,.]] => [1,2,4,3] => [3,4,2,1] => 2
[[[],[],[]]] => [[.,[.,[.,.]]],.] => [3,2,1,4] => [4,1,2,3] => 6
[[[],[[]]]] => [[.,[[.,.],.]],.] => [2,3,1,4] => [4,1,3,2] => 2
[[[[]],[]]] => [[[.,.],[.,.]],.] => [1,3,2,4] => [4,2,3,1] => 2
[[[[],[]]]] => [[[.,[.,.]],.],.] => [2,1,3,4] => [4,3,1,2] => 2
[[[[[]]]]] => [[[[.,.],.],.],.] => [1,2,3,4] => [4,3,2,1] => 1
[[],[],[],[],[]] => [.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => [1,2,3,4,5] => 120
[[],[],[],[[]]] => [.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => [1,2,3,5,4] => 24
[[],[],[[]],[]] => [.,[.,[[.,.],[.,.]]]] => [3,5,4,2,1] => [1,2,4,5,3] => 12
[[],[],[[],[]]] => [.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => [1,2,5,3,4] => 24
[[],[],[[[]]]] => [.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => [1,2,5,4,3] => 6
[[],[[]],[],[]] => [.,[[.,.],[.,[.,.]]]] => [2,5,4,3,1] => [1,3,4,5,2] => 12
[[],[[]],[[]]] => [.,[[.,.],[[.,.],.]]] => [2,4,5,3,1] => [1,3,5,4,2] => 4
[[],[[],[]],[]] => [.,[[.,[.,.]],[.,.]]] => [3,2,5,4,1] => [1,4,5,2,3] => 12
[[],[[[]]],[]] => [.,[[[.,.],.],[.,.]]] => [2,3,5,4,1] => [1,4,5,3,2] => 4
[[],[[],[],[]]] => [.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => [1,5,2,3,4] => 24
[[],[[],[[]]]] => [.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => [1,5,2,4,3] => 6
[[],[[[]],[]]] => [.,[[[.,.],[.,.]],.]] => [2,4,3,5,1] => [1,5,3,4,2] => 4
[[],[[[],[]]]] => [.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => [1,5,4,2,3] => 6
[[],[[[[]]]]] => [.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => [1,5,4,3,2] => 2
[[[]],[],[],[]] => [[.,.],[.,[.,[.,.]]]] => [1,5,4,3,2] => [2,3,4,5,1] => 24
[[[]],[],[[]]] => [[.,.],[.,[[.,.],.]]] => [1,4,5,3,2] => [2,3,5,4,1] => 6
[[[]],[[]],[]] => [[.,.],[[.,.],[.,.]]] => [1,3,5,4,2] => [2,4,5,3,1] => 4
[[[]],[[],[]]] => [[.,.],[[.,[.,.]],.]] => [1,4,3,5,2] => [2,5,3,4,1] => 6
[[[]],[[[]]]] => [[.,.],[[[.,.],.],.]] => [1,3,4,5,2] => [2,5,4,3,1] => 2
[[[],[]],[],[]] => [[.,[.,.]],[.,[.,.]]] => [2,1,5,4,3] => [3,4,5,1,2] => 12
[[[[]]],[],[]] => [[[.,.],.],[.,[.,.]]] => [1,2,5,4,3] => [3,4,5,2,1] => 6
[[[],[]],[[]]] => [[.,[.,.]],[[.,.],.]] => [2,1,4,5,3] => [3,5,4,1,2] => 4
[[[[]]],[[]]] => [[[.,.],.],[[.,.],.]] => [1,2,4,5,3] => [3,5,4,2,1] => 2
[[[],[],[]],[]] => [[.,[.,[.,.]]],[.,.]] => [3,2,1,5,4] => [4,5,1,2,3] => 12
[[[],[[]]],[]] => [[.,[[.,.],.]],[.,.]] => [2,3,1,5,4] => [4,5,1,3,2] => 4
[[[[]],[]],[]] => [[[.,.],[.,.]],[.,.]] => [1,3,2,5,4] => [4,5,2,3,1] => 4
[[[[],[]]],[]] => [[[.,[.,.]],.],[.,.]] => [2,1,3,5,4] => [4,5,3,1,2] => 4
[[[[[]]]],[]] => [[[[.,.],.],.],[.,.]] => [1,2,3,5,4] => [4,5,3,2,1] => 2
[[[],[],[],[]]] => [[.,[.,[.,[.,.]]]],.] => [4,3,2,1,5] => [5,1,2,3,4] => 24
[[[],[],[[]]]] => [[.,[.,[[.,.],.]]],.] => [3,4,2,1,5] => [5,1,2,4,3] => 6
[[[],[[]],[]]] => [[.,[[.,.],[.,.]]],.] => [2,4,3,1,5] => [5,1,3,4,2] => 4
[[[],[[],[]]]] => [[.,[[.,[.,.]],.]],.] => [3,2,4,1,5] => [5,1,4,2,3] => 6
[[[],[[[]]]]] => [[.,[[[.,.],.],.]],.] => [2,3,4,1,5] => [5,1,4,3,2] => 2
[[[[]],[],[]]] => [[[.,.],[.,[.,.]]],.] => [1,4,3,2,5] => [5,2,3,4,1] => 6
[[[[]],[[]]]] => [[[.,.],[[.,.],.]],.] => [1,3,4,2,5] => [5,2,4,3,1] => 2
[[[[],[]],[]]] => [[[.,[.,.]],[.,.]],.] => [2,1,4,3,5] => [5,3,4,1,2] => 4
[[[[[]]],[]]] => [[[[.,.],.],[.,.]],.] => [1,2,4,3,5] => [5,3,4,2,1] => 2
[[[[],[],[]]]] => [[[.,[.,[.,.]]],.],.] => [3,2,1,4,5] => [5,4,1,2,3] => 6
[[[[],[[]]]]] => [[[.,[[.,.],.]],.],.] => [2,3,1,4,5] => [5,4,1,3,2] => 2
[[[[[]],[]]]] => [[[[.,.],[.,.]],.],.] => [1,3,2,4,5] => [5,4,2,3,1] => 2
[[[[[],[]]]]] => [[[[.,[.,.]],.],.],.] => [2,1,3,4,5] => [5,4,3,1,2] => 2
[[[[[[]]]]]] => [[[[[.,.],.],.],.],.] => [1,2,3,4,5] => [5,4,3,2,1] => 1
[[],[],[],[],[],[]] => [.,[.,[.,[.,[.,[.,.]]]]]] => [6,5,4,3,2,1] => [1,2,3,4,5,6] => 720
[[],[],[],[],[[]]] => [.,[.,[.,[.,[[.,.],.]]]]] => [5,6,4,3,2,1] => [1,2,3,4,6,5] => 120
[[],[],[],[[]],[]] => [.,[.,[.,[[.,.],[.,.]]]]] => [4,6,5,3,2,1] => [1,2,3,5,6,4] => 48
[[],[],[],[[],[]]] => [.,[.,[.,[[.,[.,.]],.]]]] => [5,4,6,3,2,1] => [1,2,3,6,4,5] => 120
[[],[],[],[[[]]]] => [.,[.,[.,[[[.,.],.],.]]]] => [4,5,6,3,2,1] => [1,2,3,6,5,4] => 24
[[],[],[[]],[],[]] => [.,[.,[[.,.],[.,[.,.]]]]] => [3,6,5,4,2,1] => [1,2,4,5,6,3] => 36
[[],[],[[]],[[]]] => [.,[.,[[.,.],[[.,.],.]]]] => [3,5,6,4,2,1] => [1,2,4,6,5,3] => 12
[[],[],[[],[]],[]] => [.,[.,[[.,[.,.]],[.,.]]]] => [4,3,6,5,2,1] => [1,2,5,6,3,4] => 48
[[],[],[[[]]],[]] => [.,[.,[[[.,.],.],[.,.]]]] => [3,4,6,5,2,1] => [1,2,5,6,4,3] => 12
[[],[],[[],[],[]]] => [.,[.,[[.,[.,[.,.]]],.]]] => [5,4,3,6,2,1] => [1,2,6,3,4,5] => 120
[[],[],[[],[[]]]] => [.,[.,[[.,[[.,.],.]],.]]] => [4,5,3,6,2,1] => [1,2,6,3,5,4] => 24
[[],[],[[[]],[]]] => [.,[.,[[[.,.],[.,.]],.]]] => [3,5,4,6,2,1] => [1,2,6,4,5,3] => 12
[[],[],[[[],[]]]] => [.,[.,[[[.,[.,.]],.],.]]] => [4,3,5,6,2,1] => [1,2,6,5,3,4] => 24
[[],[],[[[[]]]]] => [.,[.,[[[[.,.],.],.],.]]] => [3,4,5,6,2,1] => [1,2,6,5,4,3] => 6
[[],[[]],[],[],[]] => [.,[[.,.],[.,[.,[.,.]]]]] => [2,6,5,4,3,1] => [1,3,4,5,6,2] => 48
[[],[[]],[],[[]]] => [.,[[.,.],[.,[[.,.],.]]]] => [2,5,6,4,3,1] => [1,3,4,6,5,2] => 12
[[],[[]],[[]],[]] => [.,[[.,.],[[.,.],[.,.]]]] => [2,4,6,5,3,1] => [1,3,5,6,4,2] => 8
[[],[[]],[[],[]]] => [.,[[.,.],[[.,[.,.]],.]]] => [2,5,4,6,3,1] => [1,3,6,4,5,2] => 12
[[],[[]],[[[]]]] => [.,[[.,.],[[[.,.],.],.]]] => [2,4,5,6,3,1] => [1,3,6,5,4,2] => 4
[[],[[],[]],[],[]] => [.,[[.,[.,.]],[.,[.,.]]]] => [3,2,6,5,4,1] => [1,4,5,6,2,3] => 36
[[],[[[]]],[],[]] => [.,[[[.,.],.],[.,[.,.]]]] => [2,3,6,5,4,1] => [1,4,5,6,3,2] => 12
[[],[[],[]],[[]]] => [.,[[.,[.,.]],[[.,.],.]]] => [3,2,5,6,4,1] => [1,4,6,5,2,3] => 12
[[],[[[]]],[[]]] => [.,[[[.,.],.],[[.,.],.]]] => [2,3,5,6,4,1] => [1,4,6,5,3,2] => 4
[[],[[],[],[]],[]] => [.,[[.,[.,[.,.]]],[.,.]]] => [4,3,2,6,5,1] => [1,5,6,2,3,4] => 48
[[],[[],[[]]],[]] => [.,[[.,[[.,.],.]],[.,.]]] => [3,4,2,6,5,1] => [1,5,6,2,4,3] => 12
[[],[[[]],[]],[]] => [.,[[[.,.],[.,.]],[.,.]]] => [2,4,3,6,5,1] => [1,5,6,3,4,2] => 8
[[],[[[],[]]],[]] => [.,[[[.,[.,.]],.],[.,.]]] => [3,2,4,6,5,1] => [1,5,6,4,2,3] => 12
[[],[[[[]]]],[]] => [.,[[[[.,.],.],.],[.,.]]] => [2,3,4,6,5,1] => [1,5,6,4,3,2] => 4
[[],[[],[],[],[]]] => [.,[[.,[.,[.,[.,.]]]],.]] => [5,4,3,2,6,1] => [1,6,2,3,4,5] => 120
[[],[[],[],[[]]]] => [.,[[.,[.,[[.,.],.]]],.]] => [4,5,3,2,6,1] => [1,6,2,3,5,4] => 24
[[],[[],[[]],[]]] => [.,[[.,[[.,.],[.,.]]],.]] => [3,5,4,2,6,1] => [1,6,2,4,5,3] => 12
[[],[[],[[],[]]]] => [.,[[.,[[.,[.,.]],.]],.]] => [4,3,5,2,6,1] => [1,6,2,5,3,4] => 24
[[],[[],[[[]]]]] => [.,[[.,[[[.,.],.],.]],.]] => [3,4,5,2,6,1] => [1,6,2,5,4,3] => 6
[[],[[[]],[],[]]] => [.,[[[.,.],[.,[.,.]]],.]] => [2,5,4,3,6,1] => [1,6,3,4,5,2] => 12
[[],[[[]],[[]]]] => [.,[[[.,.],[[.,.],.]],.]] => [2,4,5,3,6,1] => [1,6,3,5,4,2] => 4
[[],[[[],[]],[]]] => [.,[[[.,[.,.]],[.,.]],.]] => [3,2,5,4,6,1] => [1,6,4,5,2,3] => 12
[[],[[[[]]],[]]] => [.,[[[[.,.],.],[.,.]],.]] => [2,3,5,4,6,1] => [1,6,4,5,3,2] => 4
[[],[[[],[],[]]]] => [.,[[[.,[.,[.,.]]],.],.]] => [4,3,2,5,6,1] => [1,6,5,2,3,4] => 24
>>> Load all 195 entries. <<<
[[],[[[],[[]]]]] => [.,[[[.,[[.,.],.]],.],.]] => [3,4,2,5,6,1] => [1,6,5,2,4,3] => 6
[[],[[[[]],[]]]] => [.,[[[[.,.],[.,.]],.],.]] => [2,4,3,5,6,1] => [1,6,5,3,4,2] => 4
[[],[[[[],[]]]]] => [.,[[[[.,[.,.]],.],.],.]] => [3,2,4,5,6,1] => [1,6,5,4,2,3] => 6
[[],[[[[[]]]]]] => [.,[[[[[.,.],.],.],.],.]] => [2,3,4,5,6,1] => [1,6,5,4,3,2] => 2
[[[]],[],[],[],[]] => [[.,.],[.,[.,[.,[.,.]]]]] => [1,6,5,4,3,2] => [2,3,4,5,6,1] => 120
[[[]],[],[],[[]]] => [[.,.],[.,[.,[[.,.],.]]]] => [1,5,6,4,3,2] => [2,3,4,6,5,1] => 24
[[[]],[],[[]],[]] => [[.,.],[.,[[.,.],[.,.]]]] => [1,4,6,5,3,2] => [2,3,5,6,4,1] => 12
[[[]],[],[[],[]]] => [[.,.],[.,[[.,[.,.]],.]]] => [1,5,4,6,3,2] => [2,3,6,4,5,1] => 24
[[[]],[],[[[]]]] => [[.,.],[.,[[[.,.],.],.]]] => [1,4,5,6,3,2] => [2,3,6,5,4,1] => 6
[[[]],[[]],[],[]] => [[.,.],[[.,.],[.,[.,.]]]] => [1,3,6,5,4,2] => [2,4,5,6,3,1] => 12
[[[]],[[]],[[]]] => [[.,.],[[.,.],[[.,.],.]]] => [1,3,5,6,4,2] => [2,4,6,5,3,1] => 4
[[[]],[[],[]],[]] => [[.,.],[[.,[.,.]],[.,.]]] => [1,4,3,6,5,2] => [2,5,6,3,4,1] => 12
[[[]],[[[]]],[]] => [[.,.],[[[.,.],.],[.,.]]] => [1,3,4,6,5,2] => [2,5,6,4,3,1] => 4
[[[]],[[],[],[]]] => [[.,.],[[.,[.,[.,.]]],.]] => [1,5,4,3,6,2] => [2,6,3,4,5,1] => 24
[[[]],[[],[[]]]] => [[.,.],[[.,[[.,.],.]],.]] => [1,4,5,3,6,2] => [2,6,3,5,4,1] => 6
[[[]],[[[]],[]]] => [[.,.],[[[.,.],[.,.]],.]] => [1,3,5,4,6,2] => [2,6,4,5,3,1] => 4
[[[]],[[[],[]]]] => [[.,.],[[[.,[.,.]],.],.]] => [1,4,3,5,6,2] => [2,6,5,3,4,1] => 6
[[[]],[[[[]]]]] => [[.,.],[[[[.,.],.],.],.]] => [1,3,4,5,6,2] => [2,6,5,4,3,1] => 2
[[[],[]],[],[],[]] => [[.,[.,.]],[.,[.,[.,.]]]] => [2,1,6,5,4,3] => [3,4,5,6,1,2] => 48
[[[[]]],[],[],[]] => [[[.,.],.],[.,[.,[.,.]]]] => [1,2,6,5,4,3] => [3,4,5,6,2,1] => 24
[[[],[]],[],[[]]] => [[.,[.,.]],[.,[[.,.],.]]] => [2,1,5,6,4,3] => [3,4,6,5,1,2] => 12
[[[[]]],[],[[]]] => [[[.,.],.],[.,[[.,.],.]]] => [1,2,5,6,4,3] => [3,4,6,5,2,1] => 6
[[[],[]],[[]],[]] => [[.,[.,.]],[[.,.],[.,.]]] => [2,1,4,6,5,3] => [3,5,6,4,1,2] => 8
[[[[]]],[[]],[]] => [[[.,.],.],[[.,.],[.,.]]] => [1,2,4,6,5,3] => [3,5,6,4,2,1] => 4
[[[],[]],[[],[]]] => [[.,[.,.]],[[.,[.,.]],.]] => [2,1,5,4,6,3] => [3,6,4,5,1,2] => 12
[[[],[]],[[[]]]] => [[.,[.,.]],[[[.,.],.],.]] => [2,1,4,5,6,3] => [3,6,5,4,1,2] => 4
[[[[]]],[[],[]]] => [[[.,.],.],[[.,[.,.]],.]] => [1,2,5,4,6,3] => [3,6,4,5,2,1] => 6
[[[[]]],[[[]]]] => [[[.,.],.],[[[.,.],.],.]] => [1,2,4,5,6,3] => [3,6,5,4,2,1] => 2
[[[],[],[]],[],[]] => [[.,[.,[.,.]]],[.,[.,.]]] => [3,2,1,6,5,4] => [4,5,6,1,2,3] => 36
[[[],[[]]],[],[]] => [[.,[[.,.],.]],[.,[.,.]]] => [2,3,1,6,5,4] => [4,5,6,1,3,2] => 12
[[[[]],[]],[],[]] => [[[.,.],[.,.]],[.,[.,.]]] => [1,3,2,6,5,4] => [4,5,6,2,3,1] => 12
[[[[],[]]],[],[]] => [[[.,[.,.]],.],[.,[.,.]]] => [2,1,3,6,5,4] => [4,5,6,3,1,2] => 12
[[[[[]]]],[],[]] => [[[[.,.],.],.],[.,[.,.]]] => [1,2,3,6,5,4] => [4,5,6,3,2,1] => 6
[[[],[],[]],[[]]] => [[.,[.,[.,.]]],[[.,.],.]] => [3,2,1,5,6,4] => [4,6,5,1,2,3] => 12
[[[],[[]]],[[]]] => [[.,[[.,.],.]],[[.,.],.]] => [2,3,1,5,6,4] => [4,6,5,1,3,2] => 4
[[[[]],[]],[[]]] => [[[.,.],[.,.]],[[.,.],.]] => [1,3,2,5,6,4] => [4,6,5,2,3,1] => 4
[[[[],[]]],[[]]] => [[[.,[.,.]],.],[[.,.],.]] => [2,1,3,5,6,4] => [4,6,5,3,1,2] => 4
[[[[[]]]],[[]]] => [[[[.,.],.],.],[[.,.],.]] => [1,2,3,5,6,4] => [4,6,5,3,2,1] => 2
[[[],[],[],[]],[]] => [[.,[.,[.,[.,.]]]],[.,.]] => [4,3,2,1,6,5] => [5,6,1,2,3,4] => 48
[[[],[],[[]]],[]] => [[.,[.,[[.,.],.]]],[.,.]] => [3,4,2,1,6,5] => [5,6,1,2,4,3] => 12
[[[],[[]],[]],[]] => [[.,[[.,.],[.,.]]],[.,.]] => [2,4,3,1,6,5] => [5,6,1,3,4,2] => 8
[[[],[[],[]]],[]] => [[.,[[.,[.,.]],.]],[.,.]] => [3,2,4,1,6,5] => [5,6,1,4,2,3] => 12
[[[],[[[]]]],[]] => [[.,[[[.,.],.],.]],[.,.]] => [2,3,4,1,6,5] => [5,6,1,4,3,2] => 4
[[[[]],[],[]],[]] => [[[.,.],[.,[.,.]]],[.,.]] => [1,4,3,2,6,5] => [5,6,2,3,4,1] => 12
[[[[]],[[]]],[]] => [[[.,.],[[.,.],.]],[.,.]] => [1,3,4,2,6,5] => [5,6,2,4,3,1] => 4
[[[[],[]],[]],[]] => [[[.,[.,.]],[.,.]],[.,.]] => [2,1,4,3,6,5] => [5,6,3,4,1,2] => 8
[[[[[]]],[]],[]] => [[[[.,.],.],[.,.]],[.,.]] => [1,2,4,3,6,5] => [5,6,3,4,2,1] => 4
[[[[],[],[]]],[]] => [[[.,[.,[.,.]]],.],[.,.]] => [3,2,1,4,6,5] => [5,6,4,1,2,3] => 12
[[[[],[[]]]],[]] => [[[.,[[.,.],.]],.],[.,.]] => [2,3,1,4,6,5] => [5,6,4,1,3,2] => 4
[[[[[]],[]]],[]] => [[[[.,.],[.,.]],.],[.,.]] => [1,3,2,4,6,5] => [5,6,4,2,3,1] => 4
[[[[[],[]]]],[]] => [[[[.,[.,.]],.],.],[.,.]] => [2,1,3,4,6,5] => [5,6,4,3,1,2] => 4
[[[[[[]]]]],[]] => [[[[[.,.],.],.],.],[.,.]] => [1,2,3,4,6,5] => [5,6,4,3,2,1] => 2
[[[],[],[],[],[]]] => [[.,[.,[.,[.,[.,.]]]]],.] => [5,4,3,2,1,6] => [6,1,2,3,4,5] => 120
[[[],[],[],[[]]]] => [[.,[.,[.,[[.,.],.]]]],.] => [4,5,3,2,1,6] => [6,1,2,3,5,4] => 24
[[[],[],[[]],[]]] => [[.,[.,[[.,.],[.,.]]]],.] => [3,5,4,2,1,6] => [6,1,2,4,5,3] => 12
[[[],[],[[],[]]]] => [[.,[.,[[.,[.,.]],.]]],.] => [4,3,5,2,1,6] => [6,1,2,5,3,4] => 24
[[[],[],[[[]]]]] => [[.,[.,[[[.,.],.],.]]],.] => [3,4,5,2,1,6] => [6,1,2,5,4,3] => 6
[[[],[[]],[],[]]] => [[.,[[.,.],[.,[.,.]]]],.] => [2,5,4,3,1,6] => [6,1,3,4,5,2] => 12
[[[],[[]],[[]]]] => [[.,[[.,.],[[.,.],.]]],.] => [2,4,5,3,1,6] => [6,1,3,5,4,2] => 4
[[[],[[],[]],[]]] => [[.,[[.,[.,.]],[.,.]]],.] => [3,2,5,4,1,6] => [6,1,4,5,2,3] => 12
[[[],[[[]]],[]]] => [[.,[[[.,.],.],[.,.]]],.] => [2,3,5,4,1,6] => [6,1,4,5,3,2] => 4
[[[],[[],[],[]]]] => [[.,[[.,[.,[.,.]]],.]],.] => [4,3,2,5,1,6] => [6,1,5,2,3,4] => 24
[[[],[[],[[]]]]] => [[.,[[.,[[.,.],.]],.]],.] => [3,4,2,5,1,6] => [6,1,5,2,4,3] => 6
[[[],[[[]],[]]]] => [[.,[[[.,.],[.,.]],.]],.] => [2,4,3,5,1,6] => [6,1,5,3,4,2] => 4
[[[],[[[],[]]]]] => [[.,[[[.,[.,.]],.],.]],.] => [3,2,4,5,1,6] => [6,1,5,4,2,3] => 6
[[[],[[[[]]]]]] => [[.,[[[[.,.],.],.],.]],.] => [2,3,4,5,1,6] => [6,1,5,4,3,2] => 2
[[[[]],[],[],[]]] => [[[.,.],[.,[.,[.,.]]]],.] => [1,5,4,3,2,6] => [6,2,3,4,5,1] => 24
[[[[]],[],[[]]]] => [[[.,.],[.,[[.,.],.]]],.] => [1,4,5,3,2,6] => [6,2,3,5,4,1] => 6
[[[[]],[[]],[]]] => [[[.,.],[[.,.],[.,.]]],.] => [1,3,5,4,2,6] => [6,2,4,5,3,1] => 4
[[[[]],[[],[]]]] => [[[.,.],[[.,[.,.]],.]],.] => [1,4,3,5,2,6] => [6,2,5,3,4,1] => 6
[[[[]],[[[]]]]] => [[[.,.],[[[.,.],.],.]],.] => [1,3,4,5,2,6] => [6,2,5,4,3,1] => 2
[[[[],[]],[],[]]] => [[[.,[.,.]],[.,[.,.]]],.] => [2,1,5,4,3,6] => [6,3,4,5,1,2] => 12
[[[[[]]],[],[]]] => [[[[.,.],.],[.,[.,.]]],.] => [1,2,5,4,3,6] => [6,3,4,5,2,1] => 6
[[[[],[]],[[]]]] => [[[.,[.,.]],[[.,.],.]],.] => [2,1,4,5,3,6] => [6,3,5,4,1,2] => 4
[[[[[]]],[[]]]] => [[[[.,.],.],[[.,.],.]],.] => [1,2,4,5,3,6] => [6,3,5,4,2,1] => 2
[[[[],[],[]],[]]] => [[[.,[.,[.,.]]],[.,.]],.] => [3,2,1,5,4,6] => [6,4,5,1,2,3] => 12
[[[[],[[]]],[]]] => [[[.,[[.,.],.]],[.,.]],.] => [2,3,1,5,4,6] => [6,4,5,1,3,2] => 4
[[[[[]],[]],[]]] => [[[[.,.],[.,.]],[.,.]],.] => [1,3,2,5,4,6] => [6,4,5,2,3,1] => 4
[[[[[],[]]],[]]] => [[[[.,[.,.]],.],[.,.]],.] => [2,1,3,5,4,6] => [6,4,5,3,1,2] => 4
[[[[[[]]]],[]]] => [[[[[.,.],.],.],[.,.]],.] => [1,2,3,5,4,6] => [6,4,5,3,2,1] => 2
[[[[],[],[],[]]]] => [[[.,[.,[.,[.,.]]]],.],.] => [4,3,2,1,5,6] => [6,5,1,2,3,4] => 24
[[[[],[],[[]]]]] => [[[.,[.,[[.,.],.]]],.],.] => [3,4,2,1,5,6] => [6,5,1,2,4,3] => 6
[[[[],[[]],[]]]] => [[[.,[[.,.],[.,.]]],.],.] => [2,4,3,1,5,6] => [6,5,1,3,4,2] => 4
[[[[],[[],[]]]]] => [[[.,[[.,[.,.]],.]],.],.] => [3,2,4,1,5,6] => [6,5,1,4,2,3] => 6
[[[[],[[[]]]]]] => [[[.,[[[.,.],.],.]],.],.] => [2,3,4,1,5,6] => [6,5,1,4,3,2] => 2
[[[[[]],[],[]]]] => [[[[.,.],[.,[.,.]]],.],.] => [1,4,3,2,5,6] => [6,5,2,3,4,1] => 6
[[[[[]],[[]]]]] => [[[[.,.],[[.,.],.]],.],.] => [1,3,4,2,5,6] => [6,5,2,4,3,1] => 2
[[[[[],[]],[]]]] => [[[[.,[.,.]],[.,.]],.],.] => [2,1,4,3,5,6] => [6,5,3,4,1,2] => 4
[[[[[[]]],[]]]] => [[[[[.,.],.],[.,.]],.],.] => [1,2,4,3,5,6] => [6,5,3,4,2,1] => 2
[[[[[],[],[]]]]] => [[[[.,[.,[.,.]]],.],.],.] => [3,2,1,4,5,6] => [6,5,4,1,2,3] => 6
[[[[[],[[]]]]]] => [[[[.,[[.,.],.]],.],.],.] => [2,3,1,4,5,6] => [6,5,4,1,3,2] => 2
[[[[[[]],[]]]]] => [[[[[.,.],[.,.]],.],.],.] => [1,3,2,4,5,6] => [6,5,4,2,3,1] => 2
[[[[[[],[]]]]]] => [[[[[.,[.,.]],.],.],.],.] => [2,1,3,4,5,6] => [6,5,4,3,1,2] => 2
[[[[[[[]]]]]]] => [[[[[[.,.],.],.],.],.],.] => [1,2,3,4,5,6] => [6,5,4,3,2,1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of parking functions that give the same permutation.
A parking function $(a_1,\dots,a_n)$ is a list of preferred parking spots of $n$ cars entering a one-way street. Once the cars have parked, the order of the cars gives a permutation of $\{1,\dots,n\}$. This statistic records the number of parking functions that yield the same permutation of cars.
Map
reverse
Description
Sends a permutation to its reverse.
The reverse of a permutation $\sigma$ of length $n$ is given by $\tau$ with $\tau(i) = \sigma(n+1-i)$.
Map
to binary tree: right brother = right child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of an ordered tree $t$) obtained from $t$ by the following recursive rule:
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
Map
to 312-avoiding permutation
Description
Return a 312-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the minimal element of this Sylvester class.