edit this statistic or download as text // json
Identifier
Values
0 => 2
1 => 1
00 => 4
01 => 3
10 => 2
11 => 1
000 => 8
001 => 7
010 => 6
011 => 4
100 => 4
101 => 3
110 => 2
111 => 1
0000 => 16
0001 => 15
0010 => 14
0011 => 11
0100 => 12
0101 => 10
0110 => 8
0111 => 5
1000 => 8
1001 => 7
1010 => 6
1011 => 4
1100 => 4
1101 => 3
1110 => 2
1111 => 1
00000 => 32
00001 => 31
00010 => 30
00011 => 26
00100 => 28
00101 => 25
00110 => 22
00111 => 16
01000 => 24
01001 => 22
01010 => 20
01011 => 15
01100 => 16
01101 => 13
01110 => 10
01111 => 6
10000 => 16
10001 => 15
10010 => 14
10011 => 11
10100 => 12
10101 => 10
10110 => 8
10111 => 5
11000 => 8
11001 => 7
11010 => 6
11011 => 4
11100 => 4
11101 => 3
11110 => 2
11111 => 1
000000 => 64
000001 => 63
000010 => 62
000011 => 57
000100 => 60
000101 => 56
000110 => 52
000111 => 42
001000 => 56
001001 => 53
001010 => 50
001011 => 41
001100 => 44
001101 => 38
001110 => 32
001111 => 22
010000 => 48
010001 => 46
010010 => 44
010011 => 37
010100 => 40
010101 => 35
010110 => 30
010111 => 21
011000 => 32
011001 => 29
011010 => 26
011011 => 19
011100 => 20
011101 => 16
011110 => 12
011111 => 7
100000 => 32
100001 => 31
100010 => 30
100011 => 26
100100 => 28
100101 => 25
100110 => 22
>>> Load all 1022 entries. <<<
100111 => 16
101000 => 24
101001 => 22
101010 => 20
101011 => 15
101100 => 16
101101 => 13
101110 => 10
101111 => 6
110000 => 16
110001 => 15
110010 => 14
110011 => 11
110100 => 12
110101 => 10
110110 => 8
110111 => 5
111000 => 8
111001 => 7
111010 => 6
111011 => 4
111100 => 4
111101 => 3
111110 => 2
111111 => 1
0000000 => 128
0000001 => 127
0000010 => 126
0000011 => 120
0000100 => 124
0000101 => 119
0000110 => 114
0000111 => 99
0001000 => 120
0001001 => 116
0001010 => 112
0001011 => 98
0001100 => 104
0001101 => 94
0001110 => 84
0001111 => 64
0010000 => 112
0010001 => 109
0010010 => 106
0010011 => 94
0010100 => 100
0010101 => 91
0010110 => 82
0010111 => 63
0011000 => 88
0011001 => 82
0011010 => 76
0011011 => 60
0011100 => 64
0011101 => 54
0011110 => 44
0011111 => 29
0100000 => 96
0100001 => 94
0100010 => 92
0100011 => 83
0100100 => 88
0100101 => 81
0100110 => 74
0100111 => 58
0101000 => 80
0101001 => 75
0101010 => 70
0101011 => 56
0101100 => 60
0101101 => 51
0101110 => 42
0101111 => 28
0110000 => 64
0110001 => 61
0110010 => 58
0110011 => 48
0110100 => 52
0110101 => 45
0110110 => 38
0110111 => 26
0111000 => 40
0111001 => 36
0111010 => 32
0111011 => 23
0111100 => 24
0111101 => 19
0111110 => 14
0111111 => 8
1000000 => 64
1000001 => 63
1000010 => 62
1000011 => 57
1000100 => 60
1000101 => 56
1000110 => 52
1000111 => 42
1001000 => 56
1001001 => 53
1001010 => 50
1001011 => 41
1001100 => 44
1001101 => 38
1001110 => 32
1001111 => 22
1010000 => 48
1010001 => 46
1010010 => 44
1010011 => 37
1010100 => 40
1010101 => 35
1010110 => 30
1010111 => 21
1011000 => 32
1011001 => 29
1011010 => 26
1011011 => 19
1011100 => 20
1011101 => 16
1011110 => 12
1011111 => 7
1100000 => 32
1100001 => 31
1100010 => 30
1100011 => 26
1100100 => 28
1100101 => 25
1100110 => 22
1100111 => 16
1101000 => 24
1101001 => 22
1101010 => 20
1101011 => 15
1101100 => 16
1101101 => 13
1101110 => 10
1101111 => 6
1110000 => 16
1110001 => 15
1110010 => 14
1110011 => 11
1110100 => 12
1110101 => 10
1110110 => 8
1110111 => 5
1111000 => 8
1111001 => 7
1111010 => 6
1111011 => 4
1111100 => 4
1111101 => 3
1111110 => 2
1111111 => 1
00000000 => 256
00000001 => 255
00000010 => 254
00000011 => 247
00000100 => 252
00000101 => 246
00000110 => 240
00000111 => 219
00001000 => 248
00001001 => 243
00001010 => 238
00001011 => 218
00001100 => 228
00001101 => 213
00001110 => 198
00001111 => 163
00010000 => 240
00010001 => 236
00010010 => 232
00010011 => 214
00010100 => 224
00010101 => 210
00010110 => 196
00010111 => 162
00011000 => 208
00011001 => 198
00011010 => 188
00011011 => 158
00011100 => 168
00011101 => 148
00011110 => 128
00011111 => 93
00100000 => 224
00100001 => 221
00100010 => 218
00100011 => 203
00100100 => 212
00100101 => 200
00100110 => 188
00100111 => 157
00101000 => 200
00101001 => 191
00101010 => 182
00101011 => 154
00101100 => 164
00101101 => 145
00101110 => 126
00101111 => 92
00110000 => 176
00110001 => 170
00110010 => 164
00110011 => 142
00110100 => 152
00110101 => 136
00110110 => 120
00110111 => 89
00111000 => 128
00111001 => 118
00111010 => 108
00111011 => 83
00111100 => 88
00111101 => 73
00111110 => 58
00111111 => 37
01000000 => 192
01000001 => 190
01000010 => 188
01000011 => 177
01000100 => 184
01000101 => 175
01000110 => 166
01000111 => 141
01001000 => 176
01001001 => 169
01001010 => 162
01001011 => 139
01001100 => 148
01001101 => 132
01001110 => 116
01001111 => 86
01010000 => 160
01010001 => 155
01010010 => 150
01010011 => 131
01010100 => 140
01010101 => 126
01010110 => 112
01010111 => 84
01011000 => 120
01011001 => 111
01011010 => 102
01011011 => 79
01011100 => 84
01011101 => 70
01011110 => 56
01011111 => 36
01100000 => 128
01100001 => 125
01100010 => 122
01100011 => 109
01100100 => 116
01100101 => 106
01100110 => 96
01100111 => 74
01101000 => 104
01101001 => 97
01101010 => 90
01101011 => 71
01101100 => 76
01101101 => 64
01101110 => 52
01101111 => 34
01110000 => 80
01110001 => 76
01110010 => 72
01110011 => 59
01110100 => 64
01110101 => 55
01110110 => 46
01110111 => 31
01111000 => 48
01111001 => 43
01111010 => 38
01111011 => 27
01111100 => 28
01111101 => 22
01111110 => 16
01111111 => 9
10000000 => 128
10000001 => 127
10000010 => 126
10000011 => 120
10000100 => 124
10000101 => 119
10000110 => 114
10000111 => 99
10001000 => 120
10001001 => 116
10001010 => 112
10001011 => 98
10001100 => 104
10001101 => 94
10001110 => 84
10001111 => 64
10010000 => 112
10010001 => 109
10010010 => 106
10010011 => 94
10010100 => 100
10010101 => 91
10010110 => 82
10010111 => 63
10011000 => 88
10011001 => 82
10011010 => 76
10011011 => 60
10011100 => 64
10011101 => 54
10011110 => 44
10011111 => 29
10100000 => 96
10100001 => 94
10100010 => 92
10100011 => 83
10100100 => 88
10100101 => 81
10100110 => 74
10100111 => 58
10101000 => 80
10101001 => 75
10101010 => 70
10101011 => 56
10101100 => 60
10101101 => 51
10101110 => 42
10101111 => 28
10110000 => 64
10110001 => 61
10110010 => 58
10110011 => 48
10110100 => 52
10110101 => 45
10110110 => 38
10110111 => 26
10111000 => 40
10111001 => 36
10111010 => 32
10111011 => 23
10111100 => 24
10111101 => 19
10111110 => 14
10111111 => 8
11000000 => 64
11000001 => 63
11000010 => 62
11000011 => 57
11000100 => 60
11000101 => 56
11000110 => 52
11000111 => 42
11001000 => 56
11001001 => 53
11001010 => 50
11001011 => 41
11001100 => 44
11001101 => 38
11001110 => 32
11001111 => 22
11010000 => 48
11010001 => 46
11010010 => 44
11010011 => 37
11010100 => 40
11010101 => 35
11010110 => 30
11010111 => 21
11011000 => 32
11011001 => 29
11011010 => 26
11011011 => 19
11011100 => 20
11011101 => 16
11011110 => 12
11011111 => 7
11100000 => 32
11100001 => 31
11100010 => 30
11100011 => 26
11100100 => 28
11100101 => 25
11100110 => 22
11100111 => 16
11101000 => 24
11101001 => 22
11101010 => 20
11101011 => 15
11101100 => 16
11101101 => 13
11101110 => 10
11101111 => 6
11110000 => 16
11110001 => 15
11110010 => 14
11110011 => 11
11110100 => 12
11110101 => 10
11110110 => 8
11110111 => 5
11111000 => 8
11111001 => 7
11111010 => 6
11111011 => 4
11111100 => 4
11111101 => 3
11111110 => 2
11111111 => 1
000000000 => 512
000000001 => 511
000000010 => 510
000000011 => 502
000000100 => 508
000000101 => 501
000000110 => 494
000000111 => 466
000001000 => 504
000001001 => 498
000001010 => 492
000001011 => 465
000001100 => 480
000001101 => 459
000001110 => 438
000001111 => 382
000010000 => 496
000010001 => 491
000010010 => 486
000010011 => 461
000010100 => 476
000010101 => 456
000010110 => 436
000010111 => 381
000011000 => 456
000011001 => 441
000011010 => 426
000011011 => 376
000011100 => 396
000011101 => 361
000011110 => 326
000011111 => 256
000100000 => 480
000100001 => 476
000100010 => 472
000100011 => 450
000100100 => 464
000100101 => 446
000100110 => 428
000100111 => 376
000101000 => 448
000101001 => 434
000101010 => 420
000101011 => 372
000101100 => 392
000101101 => 358
000101110 => 324
000101111 => 255
000110000 => 416
000110001 => 406
000110010 => 396
000110011 => 356
000110100 => 376
000110101 => 346
000110110 => 316
000110111 => 251
000111000 => 336
000111001 => 316
000111010 => 296
000111011 => 241
000111100 => 256
000111101 => 221
000111110 => 186
000111111 => 130
001000000 => 448
001000001 => 445
001000010 => 442
001000011 => 424
001000100 => 436
001000101 => 421
001000110 => 406
001000111 => 360
001001000 => 424
001001001 => 412
001001010 => 400
001001011 => 357
001001100 => 376
001001101 => 345
001001110 => 314
001001111 => 249
001010000 => 400
001010001 => 391
001010010 => 382
001010011 => 345
001010100 => 364
001010101 => 336
001010110 => 308
001010111 => 246
001011000 => 328
001011001 => 309
001011010 => 290
001011011 => 237
001011100 => 252
001011101 => 218
001011110 => 184
001011111 => 129
001100000 => 352
001100001 => 346
001100010 => 340
001100011 => 312
001100100 => 328
001100101 => 306
001100110 => 284
001100111 => 231
001101000 => 304
001101001 => 288
001101010 => 272
001101011 => 225
001101100 => 240
001101101 => 209
001101110 => 178
001101111 => 126
001110000 => 256
001110001 => 246
001110010 => 236
001110011 => 201
001110100 => 216
001110101 => 191
001110110 => 166
001110111 => 120
001111000 => 176
001111001 => 161
001111010 => 146
001111011 => 110
001111100 => 116
001111101 => 95
001111110 => 74
001111111 => 46
010000000 => 384
010000001 => 382
010000010 => 380
010000011 => 367
010000100 => 376
010000101 => 365
010000110 => 354
010000111 => 318
010001000 => 368
010001001 => 359
010001010 => 350
010001011 => 316
010001100 => 332
010001101 => 307
010001110 => 282
010001111 => 227
010010000 => 352
010010001 => 345
010010010 => 338
010010011 => 308
010010100 => 324
010010101 => 301
010010110 => 278
010010111 => 225
010011000 => 296
010011001 => 280
010011010 => 264
010011011 => 218
010011100 => 232
010011101 => 202
010011110 => 172
010011111 => 122
010100000 => 320
010100001 => 315
010100010 => 310
010100011 => 286
010100100 => 300
010100101 => 281
010100110 => 262
010100111 => 215
010101000 => 280
010101001 => 266
010101010 => 252
010101011 => 210
010101100 => 224
010101101 => 196
010101110 => 168
010101111 => 120
010110000 => 240
010110001 => 231
010110010 => 222
010110011 => 190
010110100 => 204
010110101 => 181
010110110 => 158
010110111 => 115
010111000 => 168
010111001 => 154
010111010 => 140
010111011 => 106
010111100 => 112
010111101 => 92
010111110 => 72
010111111 => 45
011000000 => 256
011000001 => 253
011000010 => 250
011000011 => 234
011000100 => 244
011000101 => 231
011000110 => 218
011000111 => 183
011001000 => 232
011001001 => 222
011001010 => 212
011001011 => 180
011001100 => 192
011001101 => 170
011001110 => 148
011001111 => 108
011010000 => 208
011010001 => 201
011010010 => 194
011010011 => 168
011010100 => 180
011010101 => 161
011010110 => 142
011010111 => 105
011011000 => 152
011011001 => 140
011011010 => 128
011011011 => 98
011011100 => 104
011011101 => 86
011011110 => 68
011011111 => 43
011100000 => 160
011100001 => 156
011100010 => 152
011100011 => 135
011100100 => 144
011100101 => 131
011100110 => 118
011100111 => 90
011101000 => 128
011101001 => 119
011101010 => 110
011101011 => 86
011101100 => 92
011101101 => 77
011101110 => 62
011101111 => 40
011110000 => 96
011110001 => 91
011110010 => 86
011110011 => 70
011110100 => 76
011110101 => 65
011110110 => 54
011110111 => 36
011111000 => 56
011111001 => 50
011111010 => 44
011111011 => 31
011111100 => 32
011111101 => 25
011111110 => 18
011111111 => 10
100000000 => 256
100000001 => 255
100000010 => 254
100000011 => 247
100000100 => 252
100000101 => 246
100000110 => 240
100000111 => 219
100001000 => 248
100001001 => 243
100001010 => 238
100001011 => 218
100001100 => 228
100001101 => 213
100001110 => 198
100001111 => 163
100010000 => 240
100010001 => 236
100010010 => 232
100010011 => 214
100010100 => 224
100010101 => 210
100010110 => 196
100010111 => 162
100011000 => 208
100011001 => 198
100011010 => 188
100011011 => 158
100011100 => 168
100011101 => 148
100011110 => 128
100011111 => 93
100100000 => 224
100100001 => 221
100100010 => 218
100100011 => 203
100100100 => 212
100100101 => 200
100100110 => 188
100100111 => 157
100101000 => 200
100101001 => 191
100101010 => 182
100101011 => 154
100101100 => 164
100101101 => 145
100101110 => 126
100101111 => 92
100110000 => 176
100110001 => 170
100110010 => 164
100110011 => 142
100110100 => 152
100110101 => 136
100110110 => 120
100110111 => 89
100111000 => 128
100111001 => 118
100111010 => 108
100111011 => 83
100111100 => 88
100111101 => 73
100111110 => 58
100111111 => 37
101000000 => 192
101000001 => 190
101000010 => 188
101000011 => 177
101000100 => 184
101000101 => 175
101000110 => 166
101000111 => 141
101001000 => 176
101001001 => 169
101001010 => 162
101001011 => 139
101001100 => 148
101001101 => 132
101001110 => 116
101001111 => 86
101010000 => 160
101010001 => 155
101010010 => 150
101010011 => 131
101010100 => 140
101010101 => 126
101010110 => 112
101010111 => 84
101011000 => 120
101011001 => 111
101011010 => 102
101011011 => 79
101011100 => 84
101011101 => 70
101011110 => 56
101011111 => 36
101100000 => 128
101100001 => 125
101100010 => 122
101100011 => 109
101100100 => 116
101100101 => 106
101100110 => 96
101100111 => 74
101101000 => 104
101101001 => 97
101101010 => 90
101101011 => 71
101101100 => 76
101101101 => 64
101101110 => 52
101101111 => 34
101110000 => 80
101110001 => 76
101110010 => 72
101110011 => 59
101110100 => 64
101110101 => 55
101110110 => 46
101110111 => 31
101111000 => 48
101111001 => 43
101111010 => 38
101111011 => 27
101111100 => 28
101111101 => 22
101111110 => 16
101111111 => 9
110000000 => 128
110000001 => 127
110000010 => 126
110000011 => 120
110000100 => 124
110000101 => 119
110000110 => 114
110000111 => 99
110001000 => 120
110001001 => 116
110001010 => 112
110001011 => 98
110001100 => 104
110001101 => 94
110001110 => 84
110001111 => 64
110010000 => 112
110010001 => 109
110010010 => 106
110010011 => 94
110010100 => 100
110010101 => 91
110010110 => 82
110010111 => 63
110011000 => 88
110011001 => 82
110011010 => 76
110011011 => 60
110011100 => 64
110011101 => 54
110011110 => 44
110011111 => 29
110100000 => 96
110100001 => 94
110100010 => 92
110100011 => 83
110100100 => 88
110100101 => 81
110100110 => 74
110100111 => 58
110101000 => 80
110101001 => 75
110101010 => 70
110101011 => 56
110101100 => 60
110101101 => 51
110101110 => 42
110101111 => 28
110110000 => 64
110110001 => 61
110110010 => 58
110110011 => 48
110110100 => 52
110110101 => 45
110110110 => 38
110110111 => 26
110111000 => 40
110111001 => 36
110111010 => 32
110111011 => 23
110111100 => 24
110111101 => 19
110111110 => 14
110111111 => 8
111000000 => 64
111000001 => 63
111000010 => 62
111000011 => 57
111000100 => 60
111000101 => 56
111000110 => 52
111000111 => 42
111001000 => 56
111001001 => 53
111001010 => 50
111001011 => 41
111001100 => 44
111001101 => 38
111001110 => 32
111001111 => 22
111010000 => 48
111010001 => 46
111010010 => 44
111010011 => 37
111010100 => 40
111010101 => 35
111010110 => 30
111010111 => 21
111011000 => 32
111011001 => 29
111011010 => 26
111011011 => 19
111011100 => 20
111011101 => 16
111011110 => 12
111011111 => 7
111100000 => 32
111100001 => 31
111100010 => 30
111100011 => 26
111100100 => 28
111100101 => 25
111100110 => 22
111100111 => 16
111101000 => 24
111101001 => 22
111101010 => 20
111101011 => 15
111101100 => 16
111101101 => 13
111101110 => 10
111101111 => 6
111110000 => 16
111110001 => 15
111110010 => 14
111110011 => 11
111110100 => 12
111110101 => 10
111110110 => 8
111110111 => 5
111111000 => 8
111111001 => 7
111111010 => 6
111111011 => 4
111111100 => 4
111111101 => 3
111111110 => 2
111111111 => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of lattice paths of the same length weakly above the path given by a binary word.
In particular, there are $2^n$ lattice paths weakly above the the length $n$ binary word $0\dots 0$, there is a unique path weakly above $1\dots 1$, and there are $\binom{2n}{n}$ paths weakly above the length $2n$ binary word $10\dots 10$.
Code
@cached_function
def all_paths_above(L, i=0):
    if i < 0:
        return []
    elif len(L) == 0:
        return [tuple()]

    else:
        steps = []
        if L[0] == 1:
            steps.append((1,i))
            steps.append((0,i-1))
        if L[0] == 0:
            steps.append((1,i+1))
            steps.append((0,i))
        return [ tuple([a]) + path for a,i in steps for path in all_paths_above(L[1:],i)]

def statistic(D):
    return len(all_paths_above(tuple(D)))
Created
Mar 16, 2019 at 14:35 by Martin Rubey
Updated
Mar 16, 2019 at 14:35 by Martin Rubey