Identifier
Values
[1] => 1
[2] => 2
[1,1] => 2
[3] => 3
[2,1] => 3
[1,1,1] => 3
[4] => 5
[3,1] => 5
[2,2] => 7
[2,1,1] => 5
[1,1,1,1] => 5
[5] => 8
[4,1] => 8
[3,2] => 10
[3,1,1] => 8
[2,2,1] => 10
[2,1,1,1] => 8
[1,1,1,1,1] => 8
[6] => 13
[5,1] => 13
[4,2] => 17
[4,1,1] => 13
[3,3] => 22
[3,2,1] => 14
[3,1,1,1] => 13
[2,2,2] => 22
[2,2,1,1] => 17
[2,1,1,1,1] => 13
[1,1,1,1,1,1] => 13
[7] => 21
[6,1] => 21
[5,2] => 27
[5,1,1] => 21
[4,3] => 32
[4,2,1] => 24
[4,1,1,1] => 21
[3,3,1] => 32
[3,2,2] => 32
[3,2,1,1] => 24
[3,1,1,1,1] => 21
[2,2,2,1] => 32
[2,2,1,1,1] => 27
[2,1,1,1,1,1] => 21
[1,1,1,1,1,1,1] => 21
[8] => 34
[7,1] => 34
[6,2] => 44
[6,1,1] => 34
[5,3] => 54
[5,2,1] => 38
[5,1,1,1] => 34
[4,4] => 71
[4,3,1] => 47
[4,2,2] => 54
[4,2,1,1] => 41
[4,1,1,1,1] => 34
[3,3,2] => 67
[3,3,1,1] => 54
[3,2,2,1] => 47
[3,2,1,1,1] => 38
[3,1,1,1,1,1] => 34
[2,2,2,2] => 71
[2,2,2,1,1] => 54
[2,2,1,1,1,1] => 44
[2,1,1,1,1,1,1] => 34
[1,1,1,1,1,1,1,1] => 34
[9] => 55
[8,1] => 55
[7,2] => 71
[7,1,1] => 55
[6,3] => 86
[6,2,1] => 62
[6,1,1,1] => 55
[5,4] => 103
[5,3,1] => 79
[5,2,2] => 86
[5,2,1,1] => 65
[5,1,1,1,1] => 55
[4,4,1] => 103
[4,3,2] => 97
[4,3,1,1] => 79
[4,2,2,1] => 79
[4,2,1,1,1] => 65
[4,1,1,1,1,1] => 55
[3,3,3] => 131
[3,3,2,1] => 97
[3,3,1,1,1] => 86
[3,2,2,2] => 103
[3,2,2,1,1] => 79
[3,2,1,1,1,1] => 62
[3,1,1,1,1,1,1] => 55
[2,2,2,2,1] => 103
[2,2,2,1,1,1] => 86
[2,2,1,1,1,1,1] => 71
[2,1,1,1,1,1,1,1] => 55
[1,1,1,1,1,1,1,1,1] => 55
[10] => 89
[9,1] => 89
[8,2] => 115
[8,1,1] => 89
[7,3] => 140
>>> Load all 1200 entries. <<<[7,2,1] => 100
[7,1,1,1] => 89
[6,4] => 174
[6,3,1] => 126
[6,2,2] => 140
[6,2,1,1] => 106
[6,1,1,1,1] => 89
[5,5] => 228
[5,4,1] => 149
[5,3,2] => 164
[5,3,1,1] => 133
[5,2,2,1] => 126
[5,2,1,1,1] => 103
[5,1,1,1,1,1] => 89
[4,4,2] => 218
[4,4,1,1] => 174
[4,3,3] => 198
[4,3,2,1] => 140
[4,3,1,1,1] => 126
[4,2,2,2] => 174
[4,2,2,1,1] => 133
[4,2,1,1,1,1] => 106
[4,1,1,1,1,1,1] => 89
[3,3,3,1] => 198
[3,3,2,2] => 218
[3,3,2,1,1] => 164
[3,3,1,1,1,1] => 140
[3,2,2,2,1] => 149
[3,2,2,1,1,1] => 126
[3,2,1,1,1,1,1] => 100
[3,1,1,1,1,1,1,1] => 89
[2,2,2,2,2] => 228
[2,2,2,2,1,1] => 174
[2,2,2,1,1,1,1] => 140
[2,2,1,1,1,1,1,1] => 115
[2,1,1,1,1,1,1,1,1] => 89
[1,1,1,1,1,1,1,1,1,1] => 89
[11] => 144
[10,1] => 144
[9,2] => 186
[9,1,1] => 144
[8,3] => 226
[8,2,1] => 162
[8,1,1,1] => 144
[7,4] => 277
[7,3,1] => 205
[7,2,2] => 226
[7,2,1,1] => 171
[7,1,1,1,1] => 144
[6,5] => 331
[6,4,1] => 252
[6,3,2] => 261
[6,3,1,1] => 212
[6,2,2,1] => 205
[6,2,1,1,1] => 168
[6,1,1,1,1,1] => 144
[5,5,1] => 331
[5,4,2] => 317
[5,4,1,1] => 252
[5,3,3] => 329
[5,3,2,1] => 237
[5,3,1,1,1] => 212
[5,2,2,2] => 277
[5,2,2,1,1] => 212
[5,2,1,1,1,1] => 168
[5,1,1,1,1,1,1] => 144
[4,4,3] => 407
[4,4,2,1] => 316
[4,4,1,1,1] => 277
[4,3,3,1] => 298
[4,3,2,2] => 316
[4,3,2,1,1] => 237
[4,3,1,1,1,1] => 205
[4,2,2,2,1] => 252
[4,2,2,1,1,1] => 212
[4,2,1,1,1,1,1] => 171
[4,1,1,1,1,1,1,1] => 144
[3,3,3,2] => 407
[3,3,3,1,1] => 329
[3,3,2,2,1] => 317
[3,3,2,1,1,1] => 261
[3,3,1,1,1,1,1] => 226
[3,2,2,2,2] => 331
[3,2,2,2,1,1] => 252
[3,2,2,1,1,1,1] => 205
[3,2,1,1,1,1,1,1] => 162
[3,1,1,1,1,1,1,1,1] => 144
[2,2,2,2,2,1] => 331
[2,2,2,2,1,1,1] => 277
[2,2,2,1,1,1,1,1] => 226
[2,2,1,1,1,1,1,1,1] => 186
[2,1,1,1,1,1,1,1,1,1] => 144
[1,1,1,1,1,1,1,1,1,1,1] => 144
[12] => 233
[11,1] => 233
[10,2] => 301
[10,1,1] => 233
[9,3] => 366
[9,2,1] => 262
[9,1,1,1] => 233
[8,4] => 451
[8,3,1] => 331
[8,2,2] => 366
[8,2,1,1] => 277
[8,1,1,1,1] => 233
[7,5] => 559
[7,4,1] => 401
[7,3,2] => 425
[7,3,1,1] => 345
[7,2,2,1] => 331
[7,2,1,1,1] => 271
[7,1,1,1,1,1] => 233
[6,6] => 733
[6,5,1] => 481
[6,4,2] => 535
[6,4,1,1] => 426
[6,3,3] => 527
[6,3,2,1] => 377
[6,3,1,1,1] => 338
[6,2,2,2] => 451
[6,2,2,1,1] => 345
[6,2,1,1,1,1] => 274
[6,1,1,1,1,1,1] => 233
[5,5,2] => 699
[5,5,1,1] => 559
[5,4,3] => 584
[5,4,2,1] => 460
[5,4,1,1,1] => 401
[5,3,3,1] => 496
[5,3,2,2] => 534
[5,3,2,1,1] => 401
[5,3,1,1,1,1] => 345
[5,2,2,2,1] => 401
[5,2,2,1,1,1] => 338
[5,2,1,1,1,1,1] => 271
[5,1,1,1,1,1,1,1] => 233
[4,4,4] => 823
[4,4,3,1] => 616
[4,4,2,2] => 708
[4,4,2,1,1] => 534
[4,4,1,1,1,1] => 451
[4,3,3,2] => 616
[4,3,3,1,1] => 496
[4,3,2,2,1] => 460
[4,3,2,1,1,1] => 377
[4,3,1,1,1,1,1] => 331
[4,2,2,2,2] => 559
[4,2,2,2,1,1] => 426
[4,2,2,1,1,1,1] => 345
[4,2,1,1,1,1,1,1] => 277
[4,1,1,1,1,1,1,1,1] => 233
[3,3,3,3] => 823
[3,3,3,2,1] => 584
[3,3,3,1,1,1] => 527
[3,3,2,2,2] => 699
[3,3,2,2,1,1] => 535
[3,3,2,1,1,1,1] => 425
[3,3,1,1,1,1,1,1] => 366
[3,2,2,2,2,1] => 481
[3,2,2,2,1,1,1] => 401
[3,2,2,1,1,1,1,1] => 331
[3,2,1,1,1,1,1,1,1] => 262
[3,1,1,1,1,1,1,1,1,1] => 233
[2,2,2,2,2,2] => 733
[2,2,2,2,2,1,1] => 559
[2,2,2,2,1,1,1,1] => 451
[2,2,2,1,1,1,1,1,1] => 366
[2,2,1,1,1,1,1,1,1,1] => 301
[2,1,1,1,1,1,1,1,1,1,1] => 233
[1,1,1,1,1,1,1,1,1,1,1,1] => 233
[13] => 377
[12,1] => 377
[11,2] => 487
[11,1,1] => 377
[10,3] => 592
[10,2,1] => 424
[10,1,1,1] => 377
[9,4] => 728
[9,3,1] => 536
[9,2,2] => 592
[9,2,1,1] => 448
[9,1,1,1,1] => 377
[8,5] => 890
[8,4,1] => 653
[8,3,2] => 686
[8,3,1,1] => 557
[8,2,2,1] => 536
[8,2,1,1,1] => 439
[8,1,1,1,1,1] => 377
[7,6] => 1064
[7,5,1] => 812
[7,4,2] => 852
[7,4,1,1] => 678
[7,3,3] => 856
[7,3,2,1] => 614
[7,3,1,1,1] => 550
[7,2,2,2] => 728
[7,2,2,1,1] => 557
[7,2,1,1,1,1] => 442
[7,1,1,1,1,1,1] => 377
[6,6,1] => 1064
[6,5,2] => 1014
[6,5,1,1] => 812
[6,4,3] => 991
[6,4,2,1] => 776
[6,4,1,1,1] => 678
[6,3,3,1] => 794
[6,3,2,2] => 850
[6,3,2,1,1] => 638
[6,3,1,1,1,1] => 550
[6,2,2,2,1] => 653
[6,2,2,1,1,1] => 550
[6,2,1,1,1,1,1] => 442
[6,1,1,1,1,1,1,1] => 377
[5,5,3] => 1320
[5,5,2,1] => 1013
[5,5,1,1,1] => 890
[5,4,4] => 1230
[5,4,3,1] => 885
[5,4,2,2] => 1029
[5,4,2,1,1] => 777
[5,4,1,1,1,1] => 653
[5,3,3,2] => 1023
[5,3,3,1,1] => 825
[5,3,2,2,1] => 777
[5,3,2,1,1,1] => 638
[5,3,1,1,1,1,1] => 557
[5,2,2,2,2] => 890
[5,2,2,2,1,1] => 678
[5,2,2,1,1,1,1] => 550
[5,2,1,1,1,1,1,1] => 439
[5,1,1,1,1,1,1,1,1] => 377
[4,4,4,1] => 1230
[4,4,3,2] => 1262
[4,4,3,1,1] => 1023
[4,4,2,2,1] => 1029
[4,4,2,1,1,1] => 850
[4,4,1,1,1,1,1] => 728
[4,3,3,3] => 1230
[4,3,3,2,1] => 885
[4,3,3,1,1,1] => 794
[4,3,2,2,2] => 1013
[4,3,2,2,1,1] => 776
[4,3,2,1,1,1,1] => 614
[4,3,1,1,1,1,1,1] => 536
[4,2,2,2,2,1] => 812
[4,2,2,2,1,1,1] => 678
[4,2,2,1,1,1,1,1] => 557
[4,2,1,1,1,1,1,1,1] => 448
[4,1,1,1,1,1,1,1,1,1] => 377
[3,3,3,3,1] => 1230
[3,3,3,2,2] => 1320
[3,3,3,2,1,1] => 991
[3,3,3,1,1,1,1] => 856
[3,3,2,2,2,1] => 1014
[3,3,2,2,1,1,1] => 852
[3,3,2,1,1,1,1,1] => 686
[3,3,1,1,1,1,1,1,1] => 592
[3,2,2,2,2,2] => 1064
[3,2,2,2,2,1,1] => 812
[3,2,2,2,1,1,1,1] => 653
[3,2,2,1,1,1,1,1,1] => 536
[3,2,1,1,1,1,1,1,1,1] => 424
[3,1,1,1,1,1,1,1,1,1,1] => 377
[2,2,2,2,2,2,1] => 1064
[2,2,2,2,2,1,1,1] => 890
[2,2,2,2,1,1,1,1,1] => 728
[2,2,2,1,1,1,1,1,1,1] => 592
[2,2,1,1,1,1,1,1,1,1,1] => 487
[2,1,1,1,1,1,1,1,1,1,1,1] => 377
[1,1,1,1,1,1,1,1,1,1,1,1,1] => 377
[14] => 610
[13,1] => 610
[12,2] => 788
[12,1,1] => 610
[11,3] => 958
[11,2,1] => 686
[11,1,1,1] => 610
[10,4] => 1179
[10,3,1] => 867
[10,2,2] => 958
[10,2,1,1] => 725
[10,1,1,1,1] => 610
[9,5] => 1449
[9,4,1] => 1054
[9,3,2] => 1111
[9,3,1,1] => 902
[9,2,2,1] => 867
[9,2,1,1,1] => 710
[9,1,1,1,1,1] => 610
[8,6] => 1797
[8,5,1] => 1293
[8,4,2] => 1387
[8,4,1,1] => 1104
[8,3,3] => 1383
[8,3,2,1] => 991
[8,3,1,1,1] => 888
[8,2,2,2] => 1179
[8,2,2,1,1] => 902
[8,2,1,1,1,1] => 716
[8,1,1,1,1,1,1] => 610
[7,7] => 2356
[7,6,1] => 1544
[7,5,2] => 1713
[7,5,1,1] => 1371
[7,4,3] => 1575
[7,4,2,1] => 1236
[7,4,1,1,1] => 1079
[7,3,3,1] => 1290
[7,3,2,2] => 1384
[7,3,2,1,1] => 1039
[7,3,1,1,1,1] => 895
[7,2,2,2,1] => 1054
[7,2,2,1,1,1] => 888
[7,2,1,1,1,1,1] => 713
[7,1,1,1,1,1,1,1] => 610
[6,6,2] => 2248
[6,6,1,1] => 1797
[6,5,3] => 1925
[6,5,2,1] => 1469
[6,5,1,1,1] => 1293
[6,4,4] => 2053
[6,4,3,1] => 1501
[6,4,2,2] => 1737
[6,4,2,1,1] => 1311
[6,4,1,1,1,1] => 1104
[6,3,3,2] => 1639
[6,3,3,1,1] => 1321
[6,3,2,2,1] => 1237
[6,3,2,1,1,1] => 1015
[6,3,1,1,1,1,1] => 888
[6,2,2,2,2] => 1449
[6,2,2,2,1,1] => 1104
[6,2,2,1,1,1,1] => 895
[6,2,1,1,1,1,1,1] => 716
[6,1,1,1,1,1,1,1,1] => 610
[5,5,4] => 2546
[5,5,3,1] => 1997
[5,5,2,2] => 2271
[5,5,2,1,1] => 1712
[5,5,1,1,1,1] => 1449
[5,4,4,1] => 1841
[5,4,3,2] => 1810
[5,4,3,1,1] => 1469
[5,4,2,2,1] => 1495
[5,4,2,1,1,1] => 1237
[5,4,1,1,1,1,1] => 1054
[5,3,3,3] => 2053
[5,3,3,2,1] => 1469
[5,3,3,1,1,1] => 1321
[5,3,2,2,2] => 1712
[5,3,2,2,1,1] => 1311
[5,3,2,1,1,1,1] => 1039
[5,3,1,1,1,1,1,1] => 902
[5,2,2,2,2,1] => 1293
[5,2,2,2,1,1,1] => 1079
[5,2,2,1,1,1,1,1] => 888
[5,2,1,1,1,1,1,1,1] => 710
[5,1,1,1,1,1,1,1,1,1] => 610
[4,4,4,2] => 2586
[4,4,4,1,1] => 2053
[4,4,3,3] => 2586
[4,4,3,2,1] => 1810
[4,4,3,1,1,1] => 1639
[4,4,2,2,2] => 2271
[4,4,2,2,1,1] => 1737
[4,4,2,1,1,1,1] => 1384
[4,4,1,1,1,1,1,1] => 1179
[4,3,3,3,1] => 1841
[4,3,3,2,2] => 1997
[4,3,3,2,1,1] => 1501
[4,3,3,1,1,1,1] => 1290
[4,3,2,2,2,1] => 1469
[4,3,2,2,1,1,1] => 1236
[4,3,2,1,1,1,1,1] => 991
[4,3,1,1,1,1,1,1,1] => 867
[4,2,2,2,2,2] => 1797
[4,2,2,2,2,1,1] => 1371
[4,2,2,2,1,1,1,1] => 1104
[4,2,2,1,1,1,1,1,1] => 902
[4,2,1,1,1,1,1,1,1,1] => 725
[4,1,1,1,1,1,1,1,1,1,1] => 610
[3,3,3,3,2] => 2546
[3,3,3,3,1,1] => 2053
[3,3,3,2,2,1] => 1925
[3,3,3,2,1,1,1] => 1575
[3,3,3,1,1,1,1,1] => 1383
[3,3,2,2,2,2] => 2248
[3,3,2,2,2,1,1] => 1713
[3,3,2,2,1,1,1,1] => 1387
[3,3,2,1,1,1,1,1,1] => 1111
[3,3,1,1,1,1,1,1,1,1] => 958
[3,2,2,2,2,2,1] => 1544
[3,2,2,2,2,1,1,1] => 1293
[3,2,2,2,1,1,1,1,1] => 1054
[3,2,2,1,1,1,1,1,1,1] => 867
[3,2,1,1,1,1,1,1,1,1,1] => 686
[3,1,1,1,1,1,1,1,1,1,1,1] => 610
[2,2,2,2,2,2,2] => 2356
[2,2,2,2,2,2,1,1] => 1797
[2,2,2,2,2,1,1,1,1] => 1449
[2,2,2,2,1,1,1,1,1,1] => 1179
[2,2,2,1,1,1,1,1,1,1,1] => 958
[2,2,1,1,1,1,1,1,1,1,1,1] => 788
[2,1,1,1,1,1,1,1,1,1,1,1,1] => 610
[1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 610
[15] => 987
[14,1] => 987
[13,2] => 1275
[13,1,1] => 987
[12,3] => 1550
[12,2,1] => 1110
[12,1,1,1] => 987
[11,4] => 1907
[11,3,1] => 1403
[11,2,2] => 1550
[11,2,1,1] => 1173
[11,1,1,1,1] => 987
[10,5] => 2339
[10,4,1] => 1707
[10,3,2] => 1797
[10,3,1,1] => 1459
[10,2,2,1] => 1403
[10,2,1,1,1] => 1149
[10,1,1,1,1,1] => 987
[9,6] => 2861
[9,5,1] => 2105
[9,4,2] => 2239
[9,4,1,1] => 1782
[9,3,3] => 2239
[9,3,2,1] => 1605
[9,3,1,1,1] => 1438
[9,2,2,2] => 1907
[9,2,2,1,1] => 1459
[9,2,1,1,1,1] => 1158
[9,1,1,1,1,1,1] => 987
[8,7] => 3420
[8,6,1] => 2608
[8,5,2] => 2727
[8,5,1,1] => 2183
[8,4,3] => 2566
[8,4,2,1] => 2012
[8,4,1,1,1] => 1757
[8,3,3,1] => 2084
[8,3,2,2] => 2234
[8,3,2,1,1] => 1677
[8,3,1,1,1,1] => 1445
[8,2,2,2,1] => 1707
[8,2,2,1,1,1] => 1438
[8,2,1,1,1,1,1] => 1155
[8,1,1,1,1,1,1,1] => 987
[7,7,1] => 3420
[7,6,2] => 3264
[7,6,1,1] => 2608
[7,5,3] => 3245
[7,5,2,1] => 2482
[7,5,1,1,1] => 2183
[7,4,4] => 3283
[7,4,3,1] => 2386
[7,4,2,2] => 2766
[7,4,2,1,1] => 2088
[7,4,1,1,1,1] => 1757
[7,3,3,2] => 2662
[7,3,3,1,1] => 2146
[7,3,2,2,1] => 2014
[7,3,2,1,1,1] => 1653
[7,3,1,1,1,1,1] => 1445
[7,2,2,2,2] => 2339
[7,2,2,2,1,1] => 1782
[7,2,2,1,1,1,1] => 1445
[7,2,1,1,1,1,1,1] => 1155
[7,1,1,1,1,1,1,1,1] => 987
[6,6,3] => 4236
[6,6,2,1] => 3258
[6,6,1,1,1] => 2861
[6,5,4] => 3664
[6,5,3,1] => 2911
[6,5,2,2] => 3295
[6,5,2,1,1] => 2483
[6,5,1,1,1,1] => 2105
[6,4,4,1] => 3071
[6,4,3,2] => 3072
[6,4,3,1,1] => 2492
[6,4,2,2,1] => 2524
[6,4,2,1,1,1] => 2087
[6,4,1,1,1,1,1] => 1782
[6,3,3,3] => 3283
[6,3,3,2,1] => 2354
[6,3,3,1,1,1] => 2115
[6,3,2,2,2] => 2725
[6,3,2,2,1,1] => 2087
[6,3,2,1,1,1,1] => 1653
[6,3,1,1,1,1,1,1] => 1438
[6,2,2,2,2,1] => 2105
[6,2,2,2,1,1,1] => 1757
[6,2,2,1,1,1,1,1] => 1445
[6,2,1,1,1,1,1,1,1] => 1158
[6,1,1,1,1,1,1,1,1,1] => 987
[5,5,5] => 5096
[5,5,4,1] => 3804
[5,5,3,2] => 4095
[5,5,3,1,1] => 3317
[5,5,2,2,1] => 3301
[5,5,2,1,1,1] => 2725
[5,5,1,1,1,1,1] => 2339
[5,4,4,2] => 3862
[5,4,4,1,1] => 3071
[5,4,3,3] => 3724
[5,4,3,2,1] => 2595
[5,4,3,1,1,1] => 2354
[5,4,2,2,2] => 3301
[5,4,2,2,1,1] => 2524
[5,4,2,1,1,1,1] => 2014
[5,4,1,1,1,1,1,1] => 1707
[5,3,3,3,1] => 3071
[5,3,3,2,2] => 3317
[5,3,3,2,1,1] => 2492
[5,3,3,1,1,1,1] => 2146
[5,3,2,2,2,1] => 2483
[5,3,2,2,1,1,1] => 2088
[5,3,2,1,1,1,1,1] => 1677
[5,3,1,1,1,1,1,1,1] => 1459
[5,2,2,2,2,2] => 2861
[5,2,2,2,2,1,1] => 2183
[5,2,2,2,1,1,1,1] => 1757
[5,2,2,1,1,1,1,1,1] => 1438
[5,2,1,1,1,1,1,1,1,1] => 1149
[5,1,1,1,1,1,1,1,1,1,1] => 987
[4,4,4,3] => 4840
[4,4,4,2,1] => 3724
[4,4,4,1,1,1] => 3283
[4,4,3,3,1] => 3862
[4,4,3,2,2] => 4095
[4,4,3,2,1,1] => 3072
[4,4,3,1,1,1,1] => 2662
[4,4,2,2,2,1] => 3295
[4,4,2,2,1,1,1] => 2766
[4,4,2,1,1,1,1,1] => 2234
[4,4,1,1,1,1,1,1,1] => 1907
[4,3,3,3,2] => 3804
[4,3,3,3,1,1] => 3071
[4,3,3,2,2,1] => 2911
[4,3,3,2,1,1,1] => 2386
[4,3,3,1,1,1,1,1] => 2084
[4,3,2,2,2,2] => 3258
[4,3,2,2,2,1,1] => 2482
[4,3,2,2,1,1,1,1] => 2012
[4,3,2,1,1,1,1,1,1] => 1605
[4,3,1,1,1,1,1,1,1,1] => 1403
[4,2,2,2,2,2,1] => 2608
[4,2,2,2,2,1,1,1] => 2183
[4,2,2,2,1,1,1,1,1] => 1782
[4,2,2,1,1,1,1,1,1,1] => 1459
[4,2,1,1,1,1,1,1,1,1,1] => 1173
[4,1,1,1,1,1,1,1,1,1,1,1] => 987
[3,3,3,3,3] => 5096
[3,3,3,3,2,1] => 3664
[3,3,3,3,1,1,1] => 3283
[3,3,3,2,2,2] => 4236
[3,3,3,2,2,1,1] => 3245
[3,3,3,2,1,1,1,1] => 2566
[3,3,3,1,1,1,1,1,1] => 2239
[3,3,2,2,2,2,1] => 3264
[3,3,2,2,2,1,1,1] => 2727
[3,3,2,2,1,1,1,1,1] => 2239
[3,3,2,1,1,1,1,1,1,1] => 1797
[3,3,1,1,1,1,1,1,1,1,1] => 1550
[3,2,2,2,2,2,2] => 3420
[3,2,2,2,2,2,1,1] => 2608
[3,2,2,2,2,1,1,1,1] => 2105
[3,2,2,2,1,1,1,1,1,1] => 1707
[3,2,2,1,1,1,1,1,1,1,1] => 1403
[3,2,1,1,1,1,1,1,1,1,1,1] => 1110
[3,1,1,1,1,1,1,1,1,1,1,1,1] => 987
[2,2,2,2,2,2,2,1] => 3420
[2,2,2,2,2,2,1,1,1] => 2861
[2,2,2,2,2,1,1,1,1,1] => 2339
[2,2,2,2,1,1,1,1,1,1,1] => 1907
[2,2,2,1,1,1,1,1,1,1,1,1] => 1550
[2,2,1,1,1,1,1,1,1,1,1,1,1] => 1275
[2,1,1,1,1,1,1,1,1,1,1,1,1,1] => 987
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 987
[16] => 1597
[15,1] => 1597
[14,2] => 2063
[14,1,1] => 1597
[13,3] => 2508
[13,2,1] => 1796
[13,1,1,1] => 1597
[12,4] => 3086
[12,3,1] => 2270
[12,2,2] => 2508
[12,2,1,1] => 1898
[12,1,1,1,1] => 1597
[11,5] => 3788
[11,4,1] => 2761
[11,3,2] => 2908
[11,3,1,1] => 2361
[11,2,2,1] => 2270
[11,2,1,1,1] => 1859
[11,1,1,1,1,1] => 1597
[10,6] => 4658
[10,5,1] => 3398
[10,4,2] => 3626
[10,4,1,1] => 2886
[10,3,3] => 3622
[10,3,2,1] => 2596
[10,3,1,1,1] => 2326
[10,2,2,2] => 3086
[10,2,2,1,1] => 2361
[10,2,1,1,1,1] => 1874
[10,1,1,1,1,1,1] => 1597
[9,7] => 5776
[9,6,1] => 4152
[9,5,2] => 4440
[9,5,1,1] => 3554
[9,4,3] => 4141
[9,4,2,1] => 3248
[9,4,1,1,1] => 2836
[9,3,3,1] => 3374
[9,3,2,2] => 3618
[9,3,2,1,1] => 2716
[9,3,1,1,1,1] => 2340
[9,2,2,2,1] => 2761
[9,2,2,1,1,1] => 2326
[9,2,1,1,1,1,1] => 1868
[9,1,1,1,1,1,1,1] => 1597
[8,8] => 7573
[8,7,1] => 4965
[8,6,2] => 5512
[8,6,1,1] => 4405
[8,5,3] => 5170
[8,5,2,1] => 3951
[8,5,1,1,1] => 3476
[8,4,4] => 5336
[8,4,3,1] => 3887
[8,4,2,2] => 4503
[8,4,2,1,1] => 3399
[8,4,1,1,1,1] => 2861
[8,3,3,2] => 4301
[8,3,3,1,1] => 3467
[8,3,2,2,1] => 3251
[8,3,2,1,1,1] => 2668
[8,3,1,1,1,1,1] => 2333
[8,2,2,2,2] => 3788
[8,2,2,2,1,1] => 2886
[8,2,2,1,1,1,1] => 2340
[8,2,1,1,1,1,1,1] => 1871
[8,1,1,1,1,1,1,1,1] => 1597
[7,7,2] => 7225
[7,7,1,1] => 5776
[7,6,3] => 6140
[7,6,2,1] => 4731
[7,6,1,1,1] => 4152
[7,5,4] => 6210
[7,5,3,1] => 4908
[7,5,2,2] => 5566
[7,5,2,1,1] => 4195
[7,5,1,1,1,1] => 3554
[7,4,4,1] => 4912
[7,4,3,2] => 4882
[7,4,3,1,1] => 3961
[7,4,2,2,1] => 4019
[7,4,2,1,1,1] => 3324
[7,4,1,1,1,1,1] => 2836
[7,3,3,3] => 5336
[7,3,3,2,1] => 3823
[7,3,3,1,1,1] => 3436
[7,3,2,2,2] => 4437
[7,3,2,2,1,1] => 3398
[7,3,2,1,1,1,1] => 2692
[7,3,1,1,1,1,1,1] => 2340
[7,2,2,2,2,1] => 3398
[7,2,2,2,1,1,1] => 2836
[7,2,2,1,1,1,1,1] => 2333
[7,2,1,1,1,1,1,1,1] => 1868
[7,1,1,1,1,1,1,1,1,1] => 1597
[6,6,4] => 8263
[6,6,3,1] => 6409
[6,6,2,2] => 7303
[6,6,2,1,1] => 5506
[6,6,1,1,1,1] => 4658
[6,5,5] => 7642
[6,5,4,1] => 5472
[6,5,3,2] => 5973
[6,5,3,1,1] => 4836
[6,5,2,2,1] => 4790
[6,5,2,1,1,1] => 3952
[6,5,1,1,1,1,1] => 3398
[6,4,4,2] => 6448
[6,4,4,1,1] => 5124
[6,4,3,3] => 6310
[6,4,3,2,1] => 4405
[6,4,3,1,1,1] => 3993
[6,4,2,2,2] => 5572
[6,4,2,2,1,1] => 4261
[6,4,2,1,1,1,1] => 3398
[6,4,1,1,1,1,1,1] => 2886
[6,3,3,3,1] => 4912
[6,3,3,2,2] => 5314
[6,3,3,2,1,1] => 3993
[6,3,3,1,1,1,1] => 3436
[6,3,2,2,2,1] => 3952
[6,3,2,2,1,1,1] => 3324
[6,3,2,1,1,1,1,1] => 2668
[6,3,1,1,1,1,1,1,1] => 2326
[6,2,2,2,2,2] => 4658
[6,2,2,2,2,1,1] => 3554
[6,2,2,2,1,1,1,1] => 2861
[6,2,2,1,1,1,1,1,1] => 2340
[6,2,1,1,1,1,1,1,1,1] => 1874
[6,1,1,1,1,1,1,1,1,1,1] => 1597
[5,5,5,1] => 7642
[5,5,4,2] => 8005
[5,5,4,1,1] => 6350
[5,5,3,3] => 8363
[5,5,3,2,1] => 5874
[5,5,3,1,1,1] => 5314
[5,5,2,2,2] => 7284
[5,5,2,2,1,1] => 5572
[5,5,2,1,1,1,1] => 4437
[5,5,1,1,1,1,1,1] => 3788
[5,4,4,3] => 7266
[5,4,4,2,1] => 5559
[5,4,4,1,1,1] => 4912
[5,4,3,3,1] => 5559
[5,4,3,2,2] => 5874
[5,4,3,2,1,1] => 4405
[5,4,3,1,1,1,1] => 3823
[5,4,2,2,2,1] => 4790
[5,4,2,2,1,1,1] => 4019
[5,4,2,1,1,1,1,1] => 3251
[5,4,1,1,1,1,1,1,1] => 2761
[5,3,3,3,2] => 6350
[5,3,3,3,1,1] => 5124
[5,3,3,2,2,1] => 4836
[5,3,3,2,1,1,1] => 3961
[5,3,3,1,1,1,1,1] => 3467
[5,3,2,2,2,2] => 5506
[5,3,2,2,2,1,1] => 4195
[5,3,2,2,1,1,1,1] => 3399
[5,3,2,1,1,1,1,1,1] => 2716
[5,3,1,1,1,1,1,1,1,1] => 2361
[5,2,2,2,2,2,1] => 4152
[5,2,2,2,2,1,1,1] => 3476
[5,2,2,2,1,1,1,1,1] => 2836
[5,2,2,1,1,1,1,1,1,1] => 2326
[5,2,1,1,1,1,1,1,1,1,1] => 1859
[5,1,1,1,1,1,1,1,1,1,1,1] => 1597
[4,4,4,4] => 10012
[4,4,4,3,1] => 7266
[4,4,4,2,2] => 8363
[4,4,4,2,1,1] => 6310
[4,4,4,1,1,1,1] => 5336
[4,4,3,3,2] => 8005
[4,4,3,3,1,1] => 6448
[4,4,3,2,2,1] => 5973
[4,4,3,2,1,1,1] => 4882
[4,4,3,1,1,1,1,1] => 4301
[4,4,2,2,2,2] => 7303
[4,4,2,2,2,1,1] => 5566
[4,4,2,2,1,1,1,1] => 4503
[4,4,2,1,1,1,1,1,1] => 3618
[4,4,1,1,1,1,1,1,1,1] => 3086
[4,3,3,3,3] => 7642
[4,3,3,3,2,1] => 5472
[4,3,3,3,1,1,1] => 4912
[4,3,3,2,2,2] => 6409
[4,3,3,2,2,1,1] => 4908
[4,3,3,2,1,1,1,1] => 3887
[4,3,3,1,1,1,1,1,1] => 3374
[4,3,2,2,2,2,1] => 4731
[4,3,2,2,2,1,1,1] => 3951
[4,3,2,2,1,1,1,1,1] => 3248
[4,3,2,1,1,1,1,1,1,1] => 2596
[4,3,1,1,1,1,1,1,1,1,1] => 2270
[4,2,2,2,2,2,2] => 5776
[4,2,2,2,2,2,1,1] => 4405
[4,2,2,2,2,1,1,1,1] => 3554
[4,2,2,2,1,1,1,1,1,1] => 2886
[4,2,2,1,1,1,1,1,1,1,1] => 2361
[4,2,1,1,1,1,1,1,1,1,1,1] => 1898
[4,1,1,1,1,1,1,1,1,1,1,1,1] => 1597
[3,3,3,3,3,1] => 7642
[3,3,3,3,2,2] => 8263
[3,3,3,3,2,1,1] => 6210
[3,3,3,3,1,1,1,1] => 5336
[3,3,3,2,2,2,1] => 6140
[3,3,3,2,2,1,1,1] => 5170
[3,3,3,2,1,1,1,1,1] => 4141
[3,3,3,1,1,1,1,1,1,1] => 3622
[3,3,2,2,2,2,2] => 7225
[3,3,2,2,2,2,1,1] => 5512
[3,3,2,2,2,1,1,1,1] => 4440
[3,3,2,2,1,1,1,1,1,1] => 3626
[3,3,2,1,1,1,1,1,1,1,1] => 2908
[3,3,1,1,1,1,1,1,1,1,1,1] => 2508
[3,2,2,2,2,2,2,1] => 4965
[3,2,2,2,2,2,1,1,1] => 4152
[3,2,2,2,2,1,1,1,1,1] => 3398
[3,2,2,2,1,1,1,1,1,1,1] => 2761
[3,2,2,1,1,1,1,1,1,1,1,1] => 2270
[3,2,1,1,1,1,1,1,1,1,1,1,1] => 1796
[3,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1597
[2,2,2,2,2,2,2,2] => 7573
[2,2,2,2,2,2,2,1,1] => 5776
[2,2,2,2,2,2,1,1,1,1] => 4658
[2,2,2,2,2,1,1,1,1,1,1] => 3788
[2,2,2,2,1,1,1,1,1,1,1,1] => 3086
[2,2,2,1,1,1,1,1,1,1,1,1,1] => 2508
[2,2,1,1,1,1,1,1,1,1,1,1,1,1] => 2063
[2,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1597
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => 1597
[17] => 2584
[16,1] => 2584
[15,2] => 3338
[15,1,1] => 2584
[14,3] => 4058
[14,2,1] => 2906
[14,1,1,1] => 2584
[13,4] => 4993
[13,3,1] => 3673
[13,2,2] => 4058
[13,2,1,1] => 3071
[13,1,1,1,1] => 2584
[12,5] => 6127
[12,4,1] => 4468
[12,3,2] => 4705
[12,3,1,1] => 3820
[12,2,2,1] => 3673
[12,2,1,1,1] => 3008
[12,1,1,1,1,1] => 2584
[11,6] => 7519
[11,5,1] => 5503
[11,4,2] => 5865
[11,4,1,1] => 4668
[11,3,3] => 5861
[11,3,2,1] => 4201
[11,3,1,1,1] => 3764
[11,2,2,2] => 4993
[11,2,2,1,1] => 3820
[11,2,1,1,1,1] => 3032
[11,1,1,1,1,1,1] => 2584
[10,7] => 9196
[10,6,1] => 6760
[10,5,2] => 7167
[10,5,1,1] => 5737
[10,4,3] => 6707
[10,4,2,1] => 5260
[10,4,1,1,1] => 4593
[10,3,3,1] => 5458
[10,3,2,2] => 5852
[10,3,2,1,1] => 4393
[10,3,1,1,1,1] => 3785
[10,2,2,2,1] => 4468
[10,2,2,1,1,1] => 3764
[10,2,1,1,1,1,1] => 3023
[10,1,1,1,1,1,1,1] => 2584
[9,8] => 10993
[9,7,1] => 8385
[9,6,2] => 8776
[9,6,1,1] => 7013
[9,5,3] => 8415
[9,5,2,1] => 6433
[9,5,1,1,1] => 5659
[9,4,4] => 8619
[9,4,3,1] => 6273
[9,4,2,2] => 7269
[9,4,2,1,1] => 5487
[9,4,1,1,1,1] => 4618
[9,3,3,2] => 6963
[9,3,3,1,1] => 5613
[9,3,2,2,1] => 5265
[9,3,2,1,1,1] => 4321
[9,3,1,1,1,1,1] => 3778
[9,2,2,2,2] => 6127
[9,2,2,2,1,1] => 4668
[9,2,2,1,1,1,1] => 3785
[9,2,1,1,1,1,1,1] => 3026
[9,1,1,1,1,1,1,1,1] => 2584
[8,8,1] => 10993
[8,7,2] => 10487
[8,7,1,1] => 8385
[8,6,3] => 10376
[8,6,2,1] => 7989
[8,6,1,1,1] => 7013
[8,5,4] => 9874
[8,5,3,1] => 7819
[8,5,2,2] => 8861
[8,5,2,1,1] => 6678
[8,5,1,1,1,1] => 5659
[8,4,4,1] => 7983
[8,4,3,2] => 7954
[8,4,3,1,1] => 6453
[8,4,2,2,1] => 6543
[8,4,2,1,1,1] => 5411
[8,4,1,1,1,1,1] => 4618
[8,3,3,3] => 8619
[8,3,3,2,1] => 6177
[8,3,3,1,1,1] => 5551
[8,3,2,2,2] => 7162
[8,3,2,2,1,1] => 5485
[8,3,2,1,1,1,1] => 4345
[8,3,1,1,1,1,1,1] => 3778
[8,2,2,2,2,1] => 5503
[8,2,2,2,1,1,1] => 4593
[8,2,2,1,1,1,1,1] => 3778
[8,2,1,1,1,1,1,1,1] => 3026
[8,1,1,1,1,1,1,1,1,1] => 2584
[7,7,3] => 13621
[7,7,2,1] => 10471
[7,7,1,1,1] => 9196
[7,6,4] => 12039
[7,6,3,1] => 9291
[7,6,2,2] => 10603
[7,6,2,1,1] => 7995
[7,6,1,1,1,1] => 6760
[7,5,5] => 12738
[7,5,4,1] => 9276
[7,5,3,2] => 10068
[7,5,3,1,1] => 8153
[7,5,2,2,1] => 8091
[7,5,2,1,1,1] => 6677
[7,5,1,1,1,1,1] => 5737
[7,4,4,2] => 10310
[7,4,4,1,1] => 8195
[7,4,3,3] => 10034
[7,4,3,2,1] => 7000
[7,4,3,1,1,1] => 6347
[7,4,2,2,2] => 8873
[7,4,2,2,1,1] => 6785
[7,4,2,1,1,1,1] => 5412
[7,4,1,1,1,1,1,1] => 4593
[7,3,3,3,1] => 7983
[7,3,3,2,2] => 8631
[7,3,3,2,1,1] => 6485
[7,3,3,1,1,1,1] => 5582
[7,3,2,2,2,1] => 6435
[7,3,2,2,1,1,1] => 5412
[7,3,2,1,1,1,1,1] => 4345
[7,3,1,1,1,1,1,1,1] => 3785
[7,2,2,2,2,2] => 7519
[7,2,2,2,2,1,1] => 5737
[7,2,2,2,1,1,1,1] => 4618
[7,2,2,1,1,1,1,1,1] => 3778
[7,2,1,1,1,1,1,1,1,1] => 3023
[7,1,1,1,1,1,1,1,1,1,1] => 2584
[6,6,5] => 15782
[6,6,4,1] => 12347
[6,6,3,2] => 13140
[6,6,3,1,1] => 10645
[6,6,2,2,1] => 10615
[6,6,2,1,1,1] => 8764
[6,6,1,1,1,1,1] => 7519
[6,5,5,1] => 11454
[6,5,4,2] => 11523
[6,5,4,1,1] => 9136
[6,5,3,3] => 12179
[6,5,3,2,1] => 8569
[6,5,3,1,1,1] => 7747
[6,5,2,2,2] => 10568
[6,5,2,2,1,1] => 8085
[6,5,2,1,1,1,1] => 6435
[6,5,1,1,1,1,1,1] => 5503
[6,4,4,3] => 12106
[6,4,4,2,1] => 9283
[6,4,4,1,1,1] => 8195
[6,4,3,3,1] => 9421
[6,4,3,2,2] => 9969
[6,4,3,2,1,1] => 7477
[6,4,3,1,1,1,1] => 6485
[6,4,2,2,2,1] => 8085
[6,4,2,2,1,1,1] => 6785
[6,4,2,1,1,1,1,1] => 5485
[6,4,1,1,1,1,1,1,1] => 4668
[6,3,3,3,2] => 10154
[6,3,3,3,1,1] => 8195
[6,3,3,2,2,1] => 7747
[6,3,3,2,1,1,1] => 6347
[6,3,3,1,1,1,1,1] => 5551
[6,3,2,2,2,2] => 8764
[6,3,2,2,2,1,1] => 6677
[6,3,2,2,1,1,1,1] => 5411
[6,3,2,1,1,1,1,1,1] => 4321
[6,3,1,1,1,1,1,1,1,1] => 3764
[6,2,2,2,2,2,1] => 6760
[6,2,2,2,2,1,1,1] => 5659
[6,2,2,2,1,1,1,1,1] => 4618
[6,2,2,1,1,1,1,1,1,1] => 3785
[6,2,1,1,1,1,1,1,1,1,1] => 3032
[6,1,1,1,1,1,1,1,1,1,1,1] => 2584
[5,5,5,2] => 15962
[5,5,5,1,1] => 12738
[5,5,4,3] => 14930
[5,5,4,2,1] => 11529
[5,5,4,1,1,1] => 10154
[5,5,3,3,1] => 12492
[5,5,3,2,2] => 13286
[5,5,3,2,1,1] => 9969
[5,5,3,1,1,1,1] => 8631
[5,5,2,2,2,1] => 10568
[5,5,2,2,1,1,1] => 8873
[5,5,2,1,1,1,1,1] => 7162
[5,5,1,1,1,1,1,1,1] => 6127
[5,4,4,4] => 14852
[5,4,4,3,1] => 10902
[5,4,4,2,2] => 12492
[5,4,4,2,1,1] => 9421
[5,4,4,1,1,1,1] => 7983
[5,4,3,3,2] => 11529
[5,4,3,3,1,1] => 9283
[5,4,3,2,2,1] => 8569
[5,4,3,2,1,1,1] => 7000
[5,4,3,1,1,1,1,1] => 6177
[5,4,2,2,2,2] => 10615
[5,4,2,2,2,1,1] => 8091
[5,4,2,2,1,1,1,1] => 6543
[5,4,2,1,1,1,1,1,1] => 5265
[5,4,1,1,1,1,1,1,1,1] => 4468
[5,3,3,3,3] => 12738
[5,3,3,3,2,1] => 9136
[5,3,3,3,1,1,1] => 8195
[5,3,3,2,2,2] => 10645
[5,3,3,2,2,1,1] => 8153
[5,3,3,2,1,1,1,1] => 6453
[5,3,3,1,1,1,1,1,1] => 5613
[5,3,2,2,2,2,1] => 7995
[5,3,2,2,2,1,1,1] => 6678
[5,3,2,2,1,1,1,1,1] => 5487
[5,3,2,1,1,1,1,1,1,1] => 4393
[5,3,1,1,1,1,1,1,1,1,1] => 3820
[5,2,2,2,2,2,2] => 9196
[5,2,2,2,2,2,1,1] => 7013
[5,2,2,2,2,1,1,1,1] => 5659
[5,2,2,2,1,1,1,1,1,1] => 4593
[5,2,2,1,1,1,1,1,1,1,1] => 3764
[5,2,1,1,1,1,1,1,1,1,1,1] => 3008
[5,1,1,1,1,1,1,1,1,1,1,1,1] => 2584
[4,4,4,4,1] => 14852
[4,4,4,3,2] => 14930
[4,4,4,3,1,1] => 12106
[4,4,4,2,2,1] => 12179
[4,4,4,2,1,1,1] => 10034
[4,4,4,1,1,1,1,1] => 8619
[4,4,3,3,3] => 15962
[4,4,3,3,2,1] => 11523
[4,4,3,3,1,1,1] => 10310
[4,4,3,2,2,2] => 13140
[4,4,3,2,2,1,1] => 10068
[4,4,3,2,1,1,1,1] => 7954
[4,4,3,1,1,1,1,1,1] => 6963
[4,4,2,2,2,2,1] => 10603
[4,4,2,2,2,1,1,1] => 8861
[4,4,2,2,1,1,1,1,1] => 7269
[4,4,2,1,1,1,1,1,1,1] => 5852
[4,4,1,1,1,1,1,1,1,1,1] => 4993
[4,3,3,3,3,1] => 11454
[4,3,3,3,2,2] => 12347
[4,3,3,3,2,1,1] => 9276
[4,3,3,3,1,1,1,1] => 7983
[4,3,3,2,2,2,1] => 9291
[4,3,3,2,2,1,1,1] => 7819
[4,3,3,2,1,1,1,1,1] => 6273
[4,3,3,1,1,1,1,1,1,1] => 5458
[4,3,2,2,2,2,2] => 10471
[4,3,2,2,2,2,1,1] => 7989
[4,3,2,2,2,1,1,1,1] => 6433
[4,3,2,2,1,1,1,1,1,1] => 5260
[4,3,2,1,1,1,1,1,1,1,1] => 4201
[4,3,1,1,1,1,1,1,1,1,1,1] => 3673
[4,2,2,2,2,2,2,1] => 8385
[4,2,2,2,2,2,1,1,1] => 7013
[4,2,2,2,2,1,1,1,1,1] => 5737
[4,2,2,2,1,1,1,1,1,1,1] => 4668
[4,2,2,1,1,1,1,1,1,1,1,1] => 3820
[4,2,1,1,1,1,1,1,1,1,1,1,1] => 3071
[4,1,1,1,1,1,1,1,1,1,1,1,1,1] => 2584
[3,3,3,3,3,2] => 15782
[3,3,3,3,3,1,1] => 12738
[3,3,3,3,2,2,1] => 12039
[3,3,3,3,2,1,1,1] => 9874
[3,3,3,3,1,1,1,1,1] => 8619
[3,3,3,2,2,2,2] => 13621
[3,3,3,2,2,2,1,1] => 10376
[3,3,3,2,2,1,1,1,1] => 8415
[3,3,3,2,1,1,1,1,1,1] => 6707
[3,3,3,1,1,1,1,1,1,1,1] => 5861
[3,3,2,2,2,2,2,1] => 10487
[3,3,2,2,2,2,1,1,1] => 8776
[3,3,2,2,2,1,1,1,1,1] => 7167
[3,3,2,2,1,1,1,1,1,1,1] => 5865
[3,3,2,1,1,1,1,1,1,1,1,1] => 4705
[3,3,1,1,1,1,1,1,1,1,1,1,1] => 4058
[3,2,2,2,2,2,2,2] => 10993
[3,2,2,2,2,2,2,1,1] => 8385
[3,2,2,2,2,2,1,1,1,1] => 6760
[3,2,2,2,2,1,1,1,1,1,1] => 5503
[3,2,2,2,1,1,1,1,1,1,1,1] => 4468
[3,2,2,1,1,1,1,1,1,1,1,1,1] => 3673
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
4,0,1 5,0,2 6,1,0,0,2,0,0,0,0,2 7,0,0,2,0,0,2,0,0,0,0,4 8,0,0,0,2,0,0,1,0,0,2,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2
$F_{1} = q$
$F_{2} = 2\ q^{2}$
$F_{3} = 3\ q^{3}$
$F_{4} = 4\ q^{5} + q^{7}$
$F_{5} = 5\ q^{8} + 2\ q^{10}$
$F_{6} = 6\ q^{13} + q^{14} + 2\ q^{17} + 2\ q^{22}$
$F_{7} = 7\ q^{21} + 2\ q^{24} + 2\ q^{27} + 4\ q^{32}$
$F_{8} = 8\ q^{34} + 2\ q^{38} + q^{41} + 2\ q^{44} + 2\ q^{47} + 4\ q^{54} + q^{67} + 2\ q^{71}$
$F_{9} = 9\ q^{55} + 2\ q^{62} + 2\ q^{65} + 2\ q^{71} + 4\ q^{79} + 4\ q^{86} + 2\ q^{97} + 4\ q^{103} + q^{131}$
$F_{10} = 10\ q^{89} + 2\ q^{100} + q^{103} + 2\ q^{106} + 2\ q^{115} + 4\ q^{126} + 2\ q^{133} + 5\ q^{140} + 2\ q^{149} + 2\ q^{164} + 4\ q^{174} + 2\ q^{198} + 2\ q^{218} + 2\ q^{228}$
$F_{11} = 11\ q^{144} + 2\ q^{162} + 2\ q^{168} + 2\ q^{171} + 2\ q^{186} + 4\ q^{205} + 4\ q^{212} + 4\ q^{226} + 2\ q^{237} + 4\ q^{252} + 2\ q^{261} + 4\ q^{277} + q^{298} + 2\ q^{316} + 2\ q^{317} + 2\ q^{329} + 4\ q^{331} + 2\ q^{407}$
$F_{12} = 12\ q^{233} + 2\ q^{262} + 2\ q^{271} + q^{274} + 2\ q^{277} + 2\ q^{301} + 4\ q^{331} + 2\ q^{338} + 4\ q^{345} + 4\ q^{366} + 2\ q^{377} + 5\ q^{401} + 2\ q^{425} + 2\ q^{426} + 4\ q^{451} + 2\ q^{460} + 2\ q^{481} + 2\ q^{496} + 2\ q^{527} + 2\ q^{534} + 2\ q^{535} + 4\ q^{559} + 2\ q^{584} + 2\ q^{616} + 2\ q^{699} + q^{708} + 2\ q^{733} + 2\ q^{823}$
$F_{13} = 13\ q^{377} + 2\ q^{424} + 2\ q^{439} + 2\ q^{442} + 2\ q^{448} + 2\ q^{487} + 4\ q^{536} + 4\ q^{550} + 4\ q^{557} + 4\ q^{592} + 2\ q^{614} + 2\ q^{638} + 4\ q^{653} + 4\ q^{678} + 2\ q^{686} + 4\ q^{728} + 2\ q^{776} + 2\ q^{777} + 2\ q^{794} + 4\ q^{812} + q^{825} + 2\ q^{850} + 2\ q^{852} + 2\ q^{856} + 2\ q^{885} + 4\ q^{890} + 2\ q^{991} + 2\ q^{1013} + 2\ q^{1014} + 2\ q^{1023} + 2\ q^{1029} + 4\ q^{1064} + 4\ q^{1230} + q^{1262} + 2\ q^{1320}$
$F_{14} = 14\ q^{610} + 2\ q^{686} + 2\ q^{710} + q^{713} + 2\ q^{716} + 2\ q^{725} + 2\ q^{788} + 4\ q^{867} + 4\ q^{888} + 2\ q^{895} + 4\ q^{902} + 4\ q^{958} + 2\ q^{991} + q^{1015} + 2\ q^{1039} + 4\ q^{1054} + 2\ q^{1079} + 4\ q^{1104} + 2\ q^{1111} + 4\ q^{1179} + 2\ q^{1236} + 2\ q^{1237} + 2\ q^{1290} + 4\ q^{1293} + 2\ q^{1311} + 2\ q^{1321} + 2\ q^{1371} + 2\ q^{1383} + 2\ q^{1384} + 2\ q^{1387} + 4\ q^{1449} + 4\ q^{1469} + q^{1495} + 2\ q^{1501} + 2\ q^{1544} + 2\ q^{1575} + 2\ q^{1639} + 2\ q^{1712} + 2\ q^{1713} + 2\ q^{1737} + 4\ q^{1797} + 2\ q^{1810} + 2\ q^{1841} + 2\ q^{1925} + 2\ q^{1997} + 4\ q^{2053} + 2\ q^{2248} + 2\ q^{2271} + 2\ q^{2356} + 2\ q^{2546} + 2\ q^{2586}$
$F_{15} = 15\ q^{987} + 2\ q^{1110} + 2\ q^{1149} + 2\ q^{1155} + 2\ q^{1158} + 2\ q^{1173} + 2\ q^{1275} + 4\ q^{1403} + 4\ q^{1438} + 4\ q^{1445} + 4\ q^{1459} + 4\ q^{1550} + 2\ q^{1605} + 2\ q^{1653} + 2\ q^{1677} + 4\ q^{1707} + 4\ q^{1757} + 4\ q^{1782} + 2\ q^{1797} + 4\ q^{1907} + 2\ q^{2012} + 2\ q^{2014} + 2\ q^{2084} + 2\ q^{2087} + 2\ q^{2088} + 4\ q^{2105} + q^{2115} + 2\ q^{2146} + 4\ q^{2183} + 2\ q^{2234} + 4\ q^{2239} + 4\ q^{2339} + 2\ q^{2354} + 2\ q^{2386} + 2\ q^{2482} + 2\ q^{2483} + 2\ q^{2492} + 2\ q^{2524} + 2\ q^{2566} + q^{2595} + 4\ q^{2608} + 2\ q^{2662} + 2\ q^{2725} + 2\ q^{2727} + 2\ q^{2766} + 4\ q^{2861} + 2\ q^{2911} + 4\ q^{3071} + 2\ q^{3072} + 2\ q^{3245} + 2\ q^{3258} + 2\ q^{3264} + 4\ q^{3283} + 2\ q^{3295} + 2\ q^{3301} + 2\ q^{3317} + 4\ q^{3420} + 2\ q^{3664} + 2\ q^{3724} + 2\ q^{3804} + 2\ q^{3862} + 2\ q^{4095} + 2\ q^{4236} + q^{4840} + 2\ q^{5096}$
$F_{16} = 16\ q^{1597} + 2\ q^{1796} + 2\ q^{1859} + 2\ q^{1868} + q^{1871} + 2\ q^{1874} + 2\ q^{1898} + 2\ q^{2063} + 4\ q^{2270} + 4\ q^{2326} + 2\ q^{2333} + 4\ q^{2340} + 4\ q^{2361} + 4\ q^{2508} + 2\ q^{2596} + 2\ q^{2668} + q^{2692} + 2\ q^{2716} + 4\ q^{2761} + 4\ q^{2836} + 2\ q^{2861} + 4\ q^{2886} + 2\ q^{2908} + 4\ q^{3086} + 2\ q^{3248} + 2\ q^{3251} + 2\ q^{3324} + 2\ q^{3374} + 6\ q^{3398} + 2\ q^{3399} + 2\ q^{3436} + 2\ q^{3467} + 2\ q^{3476} + 4\ q^{3554} + 2\ q^{3618} + 2\ q^{3622} + 2\ q^{3626} + 4\ q^{3788} + 2\ q^{3823} + 2\ q^{3887} + 2\ q^{3951} + 2\ q^{3952} + 2\ q^{3961} + 2\ q^{3993} + 2\ q^{4019} + 2\ q^{4141} + 4\ q^{4152} + 2\ q^{4195} + q^{4261} + 2\ q^{4301} + 4\ q^{4405} + 2\ q^{4437} + 2\ q^{4440} + 2\ q^{4503} + 4\ q^{4658} + 2\ q^{4731} + 2\ q^{4790} + 2\ q^{4836} + 2\ q^{4882} + 2\ q^{4908} + 4\ q^{4912} + 2\ q^{4965} + 2\ q^{5124} + 2\ q^{5170} + 2\ q^{5314} + 4\ q^{5336} + 2\ q^{5472} + 2\ q^{5506} + 2\ q^{5512} + 2\ q^{5559} + 2\ q^{5566} + 2\ q^{5572} + 4\ q^{5776} + 2\ q^{5874} + 2\ q^{5973} + 2\ q^{6140} + 2\ q^{6210} + 2\ q^{6310} + 2\ q^{6350} + 2\ q^{6409} + 2\ q^{6448} + 2\ q^{7225} + 2\ q^{7266} + q^{7284} + 2\ q^{7303} + 2\ q^{7573} + 4\ q^{7642} + 2\ q^{8005} + 2\ q^{8263} + 2\ q^{8363} + q^{10012}$
Description
The number of monomer-dimer tilings of a Ferrers diagram.
For a hook of length $n$, this is the $n$-th Fibonacci number.
For a hook of length $n$, this is the $n$-th Fibonacci number.
References
[1] Triangle read by rows: T(n,k) (1 <= k <= n) = number of monomer-dimer tilings of an n X k board. OEIS:A210662
Code
from sage.combinat.tiling import TilingSolver, Polyomino
def statistic(la):
shape = Polyomino(Partition(la).cells())
p = Polyomino([(0, 0)])
q = Polyomino([(0, 0), (0, 1)])
T = TilingSolver([p, q], box=shape, reusable=True)
return T.number_of_solutions()
Created
Apr 06, 2019 at 20:28 by Martin Rubey
Updated
Apr 06, 2019 at 20:28 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!