Identifier
- St001385: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>1
[3]=>2
[2,1]=>1
[1,1,1]=>1
[4]=>6
[3,1]=>2
[2,2]=>1
[2,1,1]=>1
[1,1,1,1]=>1
[5]=>6
[4,1]=>6
[3,2]=>2
[3,1,1]=>2
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>1
[6]=>27
[5,1]=>6
[4,2]=>6
[4,1,1]=>6
[3,3]=>4
[3,2,1]=>2
[3,1,1,1]=>2
[2,2,2]=>1
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>1
[7]=>20
[6,1]=>27
[5,2]=>6
[5,1,1]=>6
[4,3]=>12
[4,2,1]=>6
[4,1,1,1]=>6
[3,3,1]=>4
[3,2,2]=>2
[3,2,1,1]=>2
[3,1,1,1,1]=>2
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>1
[8]=>130
[7,1]=>20
[6,2]=>27
[6,1,1]=>27
[5,3]=>12
[5,2,1]=>6
[5,1,1,1]=>6
[4,4]=>36
[4,3,1]=>12
[4,2,2]=>6
[4,2,1,1]=>6
[4,1,1,1,1]=>6
[3,3,2]=>4
[3,3,1,1]=>4
[3,2,2,1]=>2
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>2
[2,2,2,2]=>1
[2,2,2,1,1]=>1
[2,2,1,1,1,1]=>1
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>1
[9]=>124
[8,1]=>130
[7,2]=>20
[7,1,1]=>20
[6,3]=>54
[6,2,1]=>27
[6,1,1,1]=>27
[5,4]=>36
[5,3,1]=>12
[5,2,2]=>6
[5,2,1,1]=>6
[5,1,1,1,1]=>6
[4,4,1]=>36
[4,3,2]=>12
[4,3,1,1]=>12
[4,2,2,1]=>6
[4,2,1,1,1]=>6
[4,1,1,1,1,1]=>6
[3,3,3]=>8
[3,3,2,1]=>4
[3,3,1,1,1]=>4
[3,2,2,2]=>2
[3,2,2,1,1]=>2
[3,2,1,1,1,1]=>2
[3,1,1,1,1,1,1]=>2
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>1
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>1
[10]=>598
[9,1]=>124
[8,2]=>130
[8,1,1]=>130
[7,3]=>40
[7,2,1]=>20
[7,1,1,1]=>20
[6,4]=>162
[6,3,1]=>54
[6,2,2]=>27
[6,2,1,1]=>27
[6,1,1,1,1]=>27
[5,5]=>36
[5,4,1]=>36
[5,3,2]=>12
[5,3,1,1]=>12
[5,2,2,1]=>6
[5,2,1,1,1]=>6
[5,1,1,1,1,1]=>6
[4,4,2]=>36
[4,4,1,1]=>36
[4,3,3]=>24
[4,3,2,1]=>12
[4,3,1,1,1]=>12
[4,2,2,2]=>6
[4,2,2,1,1]=>6
[4,2,1,1,1,1]=>6
[4,1,1,1,1,1,1]=>6
[3,3,3,1]=>8
[3,3,2,2]=>4
[3,3,2,1,1]=>4
[3,3,1,1,1,1]=>4
[3,2,2,2,1]=>2
[3,2,2,1,1,1]=>2
[3,2,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1]=>2
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>1
[2,2,2,1,1,1,1]=>1
[2,2,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition.
Equivalently, given an integer partition $\lambda$, this is the number of molecular combinatorial species that decompose into a product of atomic species of sizes $\lambda_1,\lambda_2,\dots$. In particular, the value on the partition $(n)$ is the number of atomic species of degree $n$, [2].
Equivalently, given an integer partition $\lambda$, this is the number of molecular combinatorial species that decompose into a product of atomic species of sizes $\lambda_1,\lambda_2,\dots$. In particular, the value on the partition $(n)$ is the number of atomic species of degree $n$, [2].
References
[1] Naughton, L., Pfeiffer, G. Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group arXiv:1211.1911
[2] Number of atomic species of degree n; also number of connected permutation groups of degree n. OEIS:A005226
[2] Number of atomic species of degree n; also number of connected permutation groups of degree n. OEIS:A005226
Code
@cached_function def conjugacy_classes_subgroups(n): if n == 1: return 1 return len(SymmetricGroup(n).conjugacy_classes_subgroups()) def statistic(la): def aux(n): return n*conjugacy_classes_subgroups(n) - sum(aux(k)*conjugacy_classes_subgroups(n-k) for k in range(1,n)) def connected(n): return sum(moebius(n//d)*aux(d) for d in divisors(n))//n return prod(connected(n) for n in la)
Created
Apr 22, 2019 at 20:05 by Martin Rubey
Updated
Apr 22, 2019 at 20:05 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!