Identifier
Values
([],1) => ([],1) => [1] => 1
([],2) => ([],2) => [1,1] => 1
([(0,1)],2) => ([(0,1)],2) => [2] => 1
([],3) => ([],3) => [1,1,1] => 1
([(1,2)],3) => ([(1,2)],3) => [2,1] => 1
([(0,1),(0,2)],3) => ([(0,2),(1,2)],3) => [2,2] => 1
([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => [2,2] => 1
([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => [2,2] => 1
([],4) => ([],4) => [1,1,1,1] => 1
([(2,3)],4) => ([(2,3)],4) => [2,1,1] => 1
([(1,2),(1,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => 1
([(0,1),(0,2),(0,3)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => 1
([(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => 1
([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => 1
([(0,3),(1,3),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => [2,2] => 1
([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => [2,2,2,2] => 1
([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([],5) => ([],5) => [1,1,1,1,1] => 1
([(3,4)],5) => ([(3,4)],5) => [2,1,1,1] => 1
([(2,3),(2,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => 1
([(1,2),(1,3),(1,4)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(0,1),(0,2),(0,3),(0,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => 1
([(0,2),(0,3),(0,4),(4,1)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(1,3),(1,4),(4,2)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(0,3),(0,4),(4,1),(4,2)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(1,2),(1,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,1] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(2,3),(3,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => 1
([(1,4),(4,2),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(4,1),(4,2),(4,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => 1
([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => 1
([(1,4),(2,4),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => 1
([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,4),(2,3)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,4),(2,3),(2,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => [2,2,1] => 1
([(1,4),(2,3),(2,4)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,2,2,1] => 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(0,4),(1,2),(1,4),(4,3)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,2),(1,3)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => 1
([(0,4),(1,2),(1,3),(1,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(0,3),(0,4),(1,2),(1,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,2,2,2] => 1
([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([(1,4),(3,2),(4,3)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,3),(1,4),(4,2)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => 1
([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => [2,2,2,2] => 1
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,2,2] => 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [2,2,2,2,2] => 1
([],6) => ([],6) => [1,1,1,1,1,1] => 1
([(4,5)],6) => ([(4,5)],6) => [2,1,1,1,1] => 1
([(3,4),(3,5)],6) => ([(3,5),(4,5)],6) => [2,2,1,1,1] => 1
([(2,3),(2,4),(2,5)],6) => ([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => 1
([(1,2),(1,3),(1,4),(1,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,3),(1,4),(1,5),(5,2)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(2,3),(2,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => 1
([(1,4),(1,5),(5,2),(5,3)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(2,3),(2,4),(3,5),(4,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,1,1] => 1
([(1,4),(1,5),(4,3),(5,2)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(3,4),(4,5)],6) => ([(3,5),(4,5)],6) => [2,2,1,1,1] => 1
([(2,3),(3,4),(3,5)],6) => ([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => 1
([(1,5),(5,2),(5,3),(5,4)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => 1
>>> Load all 349 entries. <<<
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(2,3),(3,5),(5,4)],6) => ([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => 1
([(1,4),(4,5),(5,2),(5,3)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(3,5),(4,5)],6) => ([(3,5),(4,5)],6) => [2,2,1,1,1] => 1
([(2,5),(3,5),(5,4)],6) => ([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => 1
([(1,5),(2,5),(5,3),(5,4)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(2,5),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => [2,2,2,1,1] => 1
([(1,5),(2,5),(3,5),(5,4)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,5),(3,4)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,5),(3,4)],6) => ([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,5),(3,4),(5,3)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(1,5),(2,4),(3,4),(4,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(5,4)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,5),(3,4),(3,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(2,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,5),(3,4),(4,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 1
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => [2,2,1,1] => 1
([(2,5),(3,4),(3,5)],6) => ([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => 1
([(1,5),(2,3),(2,5),(3,4)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,1,1] => 1
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,3),(2,5),(5,4)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,3),(2,4)],6) => ([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 1
([(1,5),(2,3),(2,4),(2,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,2),(1,3),(1,4)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,3),(1,5),(4,2),(5,4)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,3),(2,4),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,3),(1,5),(5,2)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => 1
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2,2,2] => 1
([(1,4),(1,5),(2,3),(2,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,4),(0,5),(1,2),(1,3)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 1
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(1,4),(2,3),(2,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(1,4),(5,2)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 1
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(2,5),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => [2,2,2,1,1] => 1
([(1,5),(2,3),(3,5),(5,4)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,3),(2,4),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 1
([(1,5),(4,3),(5,2),(5,4)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(1,5),(2,3),(3,4),(3,5)],6) => ([(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,5),(5,2),(5,3)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(3,4),(4,2),(5,3)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,4),(2,3),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(4,2),(5,3)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2,2] => 1
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(1,5),(2,3),(3,4),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,2,2,1] => 1
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => [2,2,2] => 1
([(0,5),(1,3),(2,4),(2,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(4,2),(5,4)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(2,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => [2,2,2,2] => 1
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [2,2,2,2,2] => 1
([],7) => ([],7) => [1,1,1,1,1,1,1] => 1
([(5,6)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => 1
([(4,5),(4,6)],7) => ([(4,6),(5,6)],7) => [2,2,1,1,1,1] => 1
([(3,4),(3,5),(3,6)],7) => ([(3,6),(4,6),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,3),(2,4),(2,5),(2,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,4),(2,5),(2,6),(6,3)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(3,4),(3,5),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,5),(2,6),(6,3),(6,4)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,5),(2,6),(5,4),(6,3)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(4,5),(5,6)],7) => ([(4,6),(5,6)],7) => [2,2,1,1,1,1] => 1
([(3,4),(4,5),(4,6)],7) => ([(3,6),(4,6),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,6),(6,3),(6,4),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1,1] => 1
([(3,4),(4,6),(6,5)],7) => ([(3,6),(4,5),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,5),(5,6),(6,3),(6,4)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(4,6),(5,6)],7) => ([(4,6),(5,6)],7) => [2,2,1,1,1,1] => 1
([(3,6),(4,6),(6,5)],7) => ([(3,6),(4,6),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,6),(3,6),(6,4),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1,1] => 1
([(3,6),(4,6),(5,6)],7) => ([(3,6),(4,6),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,6),(3,6),(4,6),(6,5)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1,1] => 1
([(0,6),(1,6),(2,6),(3,6),(4,5)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(1,6),(2,6),(3,6),(4,5)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1] => 1
([(0,6),(1,6),(2,6),(3,4),(6,5)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,6),(3,4),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(2,6),(3,6),(4,5)],7) => ([(2,3),(4,6),(5,6)],7) => [2,2,2,1,1] => 1
([(2,6),(3,5),(4,5),(4,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(0,6),(1,5),(2,5),(2,6),(3,4)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(2,6),(3,6),(4,5),(6,4)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,6),(3,5),(4,5),(5,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,6),(3,4),(6,5)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1] => 1
([(0,6),(1,6),(2,3),(6,4),(6,5)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(2,6),(3,6),(4,5),(4,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,6),(3,4),(3,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 1
([(0,6),(1,6),(2,3),(2,4),(6,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,3),(2,4),(2,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,3),(2,4),(4,5)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,6),(3,4),(4,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 1
([(0,6),(1,6),(2,3),(3,5),(6,4)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,3),(1,6),(2,6),(3,4),(3,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,3),(1,6),(2,6),(3,5),(5,4)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 1
([(0,6),(1,6),(2,5),(3,5),(6,4)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,5),(3,4)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [2,2,2,2] => 1
([(0,6),(1,6),(2,3),(4,5),(6,4)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,5),(2,5),(3,4),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,5),(3,4),(3,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,5),(1,5),(2,6),(3,4),(3,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,6),(2,4),(3,5),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,5),(2,5),(3,4),(4,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => [2,2,1,1,1] => 1
([(3,6),(4,5),(4,6)],7) => ([(3,6),(4,5),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,6),(3,4),(3,6),(4,5)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(2,6),(3,4),(3,6),(6,5)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,6),(3,4),(3,5)],7) => ([(2,3),(4,6),(5,6)],7) => [2,2,2,1,1] => 1
([(2,6),(3,4),(3,5),(3,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,3),(2,4),(2,5)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1] => 1
([(0,6),(1,2),(1,3),(1,4),(1,5)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,5),(1,3),(1,4),(1,6),(6,2)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(1,4),(1,5),(6,2)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(2,4),(2,6),(5,3),(6,5)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(2,6),(3,4),(3,5),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(1,5),(2,4),(2,6),(6,3)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1] => 1
([(0,5),(1,4),(1,6),(6,2),(6,3)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,4),(1,5),(5,3),(6,2)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(0,4),(1,5),(1,6),(5,3),(6,2)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(2,5),(2,6),(3,4),(3,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(1,5),(1,6),(2,3),(2,4)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 1
([(0,5),(0,6),(1,2),(1,3),(1,4)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(0,3),(0,4),(1,5),(1,6),(6,2)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(2,5),(3,4),(3,6),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,4),(2,5),(6,3)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 1
([(0,6),(1,4),(1,5),(6,2),(6,3)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(3,6),(4,5),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [2,2,2,1,1,1] => 1
([(2,6),(3,4),(4,6),(6,5)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,4),(3,5),(5,6)],7) => ([(2,3),(4,6),(5,6)],7) => [2,2,2,1,1] => 1
([(2,6),(5,4),(6,3),(6,5)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(2,6),(3,4),(4,5),(4,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1,1] => 1
([(1,5),(2,6),(6,3),(6,4)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => [2,2,2,2,1] => 1
([(0,5),(1,6),(6,2),(6,3),(6,4)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(2,6),(4,5),(5,3),(6,4)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(2,5),(3,4),(4,6),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,5),(5,3),(6,4)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,1] => 1
([(0,6),(1,5),(5,4),(6,2),(6,3)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [2,2,2,2,2] => 1
([(2,6),(3,4),(4,5),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => [2,2,2,2,1,1] => 1
([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => 1
([(1,6),(2,5),(3,4),(3,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1] => 1
([(0,6),(1,3),(2,4),(2,6),(4,5)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(2,4),(2,6),(6,5)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,5),(1,6),(2,3),(2,4)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,4),(2,3),(2,6),(4,5)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,5),(2,3),(2,4)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [2,2,2,2] => 1
([(0,6),(1,5),(2,3),(2,4),(2,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,4),(1,3),(1,6),(5,2),(6,5)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,4),(2,3),(2,5),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,5),(1,4),(1,6),(2,3),(2,6)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,3),(1,5),(2,4),(2,6),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(1,4),(5,2),(6,5)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,5),(2,3),(2,4),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(1,6),(2,4),(5,3),(6,5)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1] => 1
([(0,4),(1,5),(5,6),(6,2),(6,3)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,5),(1,6),(4,3),(5,4),(6,2)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(1,6),(2,4),(3,5),(5,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => [2,2,2,2,1] => 1
([(0,6),(1,3),(2,4),(4,6),(6,5)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,6),(6,3)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => [2,2,2,2] => 1
([(0,4),(1,6),(5,3),(6,2),(6,5)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(2,4),(4,5),(4,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(4,5),(5,2),(6,4)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(2,4),(3,5),(4,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [2,2,2,2,2] => 1
([(0,5),(1,4),(2,3),(4,6),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
([(0,6),(1,3),(2,4),(4,5),(5,6)],7) => ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [2,2,2,2,2] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition.
Equivalently, given an integer partition $\lambda$, this is the number of molecular combinatorial species that decompose into a product of atomic species of sizes $\lambda_1,\lambda_2,\dots$. In particular, the value on the partition $(n)$ is the number of atomic species of degree $n$, [2].
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.