Identifier
-
Mp00127:
Permutations
—left-to-right-maxima to Dyck path⟶
Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001396: Posets ⟶ ℤ
Values
[1] => [1,0] => [1,0] => ([],1) => 0
[1,2] => [1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => 0
[2,1] => [1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => 0
[1,2,3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[1,3,2] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => 0
[2,1,3] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 0
[2,3,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 0
[3,1,2] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => 0
[3,2,1] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => 0
[1,2,3,4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[1,3,2,4] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,3,4,2] => [1,0,1,1,0,1,0,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[1,4,2,3] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[1,4,3,2] => [1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[2,1,3,4] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[2,1,4,3] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,3,1,4] => [1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,3,4,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,4,1,3] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[2,4,3,1] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[3,1,2,4] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[3,1,4,2] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[3,2,1,4] => [1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[3,2,4,1] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 0
[3,4,1,2] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[3,4,2,1] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 0
[4,1,2,3] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,1,3,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,2,1,3] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,2,3,1] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,3,1,2] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[4,3,2,1] => [1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,2,4,6,5] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,3,2,5,4,6] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,2,5,6,4] => [1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,2,6,4,5] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,3,2,6,5,4] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,3,4,2,6,5] => [1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,4,5,2,6] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,4,5,6,2] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,4,6,2,5] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,4,6,5,2] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,5,2,6,4] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,5,4,6,2] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,5,6,2,4] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,3,5,6,4,2] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,3,6,5] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,5,3,6] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,5,6,3] => [1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,6,3,5] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,4,6,5,3] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,3,1,4,6,5] => [1,1,0,1,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[2,3,1,5,4,6] => [1,1,0,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
>>> Load all 151 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of triples of incomparable elements in a finite poset.
For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
Map
peaks-to-valleys
Description
Return the path that has a valley wherever the original path has a peak of height at least one.
More precisely, the height of a valley in the image is the height of the corresponding peak minus $2$.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.
More precisely, the height of a valley in the image is the height of the corresponding peak minus $2$.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.
Map
left-to-right-maxima to Dyck path
Description
The left-to-right maxima of a permutation as a Dyck path.
Let $(c_1, \dots, c_k)$ be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are $c_1, c_1+c_2, \dots, c_1+\dots+c_k$.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Let $(c_1, \dots, c_k)$ be the rise composition Mp00102rise composition of the path. Then the corresponding left-to-right maxima are $c_1, c_1+c_2, \dots, c_1+\dots+c_k$.
Restricted to 321-avoiding permutations, this is the inverse of Mp00119to 321-avoiding permutation (Krattenthaler), restricted to 312-avoiding permutations, this is the inverse of Mp00031to 312-avoiding permutation.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!