Identifier
- St001411: Permutations ⟶ ℤ
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 0
[3,2,1] => 1
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 0
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 0
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 2
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 2
[4,3,2,1] => 4
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 1
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 1
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
[1,4,5,3,2] => 2
[1,5,2,3,4] => 0
[1,5,2,4,3] => 1
[1,5,3,2,4] => 1
[1,5,3,4,2] => 2
[1,5,4,2,3] => 2
[1,5,4,3,2] => 4
[2,1,3,4,5] => 0
[2,1,3,5,4] => 0
[2,1,4,3,5] => 0
[2,1,4,5,3] => 0
[2,1,5,3,4] => 0
[2,1,5,4,3] => 1
[2,3,1,4,5] => 0
[2,3,1,5,4] => 0
[2,3,4,1,5] => 0
[2,3,4,5,1] => 0
[2,3,5,1,4] => 0
[2,3,5,4,1] => 1
[2,4,1,3,5] => 0
[2,4,1,5,3] => 0
[2,4,3,1,5] => 1
[2,4,3,5,1] => 1
[2,4,5,1,3] => 1
[2,4,5,3,1] => 2
[2,5,1,3,4] => 0
[2,5,1,4,3] => 1
[2,5,3,1,4] => 1
[2,5,3,4,1] => 2
[2,5,4,1,3] => 2
[2,5,4,3,1] => 4
[3,1,2,4,5] => 0
[3,1,2,5,4] => 0
[3,1,4,2,5] => 0
[3,1,4,5,2] => 0
[3,1,5,2,4] => 0
[3,1,5,4,2] => 1
[3,2,1,4,5] => 1
[3,2,1,5,4] => 1
[3,2,4,1,5] => 1
[3,2,4,5,1] => 1
[3,2,5,1,4] => 1
[3,2,5,4,1] => 2
[3,4,1,2,5] => 1
[3,4,1,5,2] => 1
[3,4,2,1,5] => 2
[3,4,2,5,1] => 2
[3,4,5,1,2] => 3
[3,4,5,2,1] => 3
[3,5,1,2,4] => 1
[3,5,1,4,2] => 2
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of patterns 321 or 3412 in a permutation.
A permutation is boolean if its principal order ideal in the (strong) Bruhat order is boolean.
It is shown in [1, Theorem 5.3] that a permutation is boolean if and only if it avoids the two patterns 321 and 3412.
A permutation is boolean if its principal order ideal in the (strong) Bruhat order is boolean.
It is shown in [1, Theorem 5.3] that a permutation is boolean if and only if it avoids the two patterns 321 and 3412.
References
[1] Tenner, B. E. Pattern avoidance and the Bruhat order MathSciNet:2333139 arXiv:math/0604322
Code
def statistic(sigma):
return len(sigma.pattern_positions([3,2,1]) + sigma.pattern_positions([3,4,1,2]))
Created
Jun 06, 2019 at 10:07 by Christian Stump
Updated
Jun 06, 2019 at 10:07 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!