Identifier
- St001419: Binary words ⟶ ℤ
Values
0 => 0
1 => 1
00 => 0
01 => 1
10 => 1
11 => 2
000 => 0
001 => 1
010 => 1
011 => 2
100 => 1
101 => 3
110 => 2
111 => 3
0000 => 0
0001 => 1
0010 => 1
0011 => 2
0100 => 1
0101 => 3
0110 => 2
0111 => 3
1000 => 1
1001 => 4
1010 => 3
1011 => 3
1100 => 2
1101 => 3
1110 => 3
1111 => 4
00000 => 0
00001 => 1
00010 => 1
00011 => 2
00100 => 1
00101 => 3
00110 => 2
00111 => 3
01000 => 1
01001 => 4
01010 => 3
01011 => 3
01100 => 2
01101 => 3
01110 => 3
01111 => 4
10000 => 1
10001 => 5
10010 => 4
10011 => 4
10100 => 3
10101 => 5
10110 => 3
10111 => 3
11000 => 2
11001 => 4
11010 => 3
11011 => 5
11100 => 3
11101 => 3
11110 => 4
11111 => 5
000000 => 0
000001 => 1
000010 => 1
000011 => 2
000100 => 1
000101 => 3
000110 => 2
000111 => 3
001000 => 1
001001 => 4
001010 => 3
001011 => 3
001100 => 2
001101 => 3
001110 => 3
001111 => 4
010000 => 1
010001 => 5
010010 => 4
010011 => 4
010100 => 3
010101 => 5
010110 => 3
010111 => 3
011000 => 2
011001 => 4
011010 => 3
011011 => 5
011100 => 3
011101 => 3
011110 => 4
011111 => 5
100000 => 1
100001 => 6
100010 => 5
100011 => 5
100100 => 4
100101 => 4
100110 => 4
>>> Load all 1022 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of the longest palindromic factor beginning with a one of a binary word.
Code
def statistic(w):
return max([k-a for a in range(len(w)) for k in range(len(w)+1) if w[a] == 1 and w[a:k] == w[a:k][::-1]]+[0])
Created
Jun 12, 2019 at 06:34 by Martin Rubey
Updated
Jun 12, 2019 at 06:34 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!