Identifier
- St001421: Binary words ⟶ ℤ
Values
0 => 0
1 => 0
00 => 0
01 => 0
10 => 1
11 => 0
000 => 0
001 => 0
010 => 1
011 => 0
100 => 1
101 => 1
110 => 1
111 => 0
0000 => 0
0001 => 0
0010 => 1
0011 => 0
0100 => 1
0101 => 1
0110 => 1
0111 => 0
1000 => 1
1001 => 1
1010 => 2
1011 => 1
1100 => 2
1101 => 1
1110 => 1
1111 => 0
00000 => 0
00001 => 0
00010 => 1
00011 => 0
00100 => 1
00101 => 1
00110 => 1
00111 => 0
01000 => 1
01001 => 1
01010 => 2
01011 => 1
01100 => 2
01101 => 1
01110 => 1
01111 => 0
10000 => 1
10001 => 1
10010 => 1
10011 => 1
10100 => 2
10101 => 2
10110 => 1
10111 => 1
11000 => 2
11001 => 2
11010 => 2
11011 => 1
11100 => 2
11101 => 1
11110 => 1
11111 => 0
000000 => 0
000001 => 0
000010 => 1
000011 => 0
000100 => 1
000101 => 1
000110 => 1
000111 => 0
001000 => 1
001001 => 1
001010 => 2
001011 => 1
001100 => 2
001101 => 1
001110 => 1
001111 => 0
010000 => 1
010001 => 1
010010 => 1
010011 => 1
010100 => 2
010101 => 2
010110 => 1
010111 => 1
011000 => 2
011001 => 2
011010 => 2
011011 => 1
011100 => 2
011101 => 1
011110 => 1
011111 => 0
100000 => 1
100001 => 1
100010 => 1
100011 => 1
100100 => 1
100101 => 1
100110 => 3
>>> Load all 1022 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word.
Code
def statistic(w):
return max([(l+1)//2 for a in range(len(w)) for l in range(len(w)-a) if w[a] == 1 and all(w[a+i] == 1-w[a+l-i] for i in range(l))] + [0])
Created
Jun 12, 2019 at 08:58 by Martin Rubey
Updated
Jun 12, 2019 at 08:58 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!