Identifier
Values
([(0,1)],2) => [1] => 10 => 10 => 0
([(1,2)],3) => [1] => 10 => 10 => 0
([(0,2),(1,2)],3) => [2] => 100 => 010 => 0
([(0,1),(0,2),(1,2)],3) => [3] => 1000 => 0010 => 0
([(2,3)],4) => [1] => 10 => 10 => 0
([(1,3),(2,3)],4) => [2] => 100 => 010 => 0
([(0,3),(1,3),(2,3)],4) => [3] => 1000 => 0010 => 0
([(0,3),(1,2)],4) => [1,1] => 110 => 110 => 0
([(0,3),(1,2),(2,3)],4) => [3] => 1000 => 0010 => 0
([(1,2),(1,3),(2,3)],4) => [3] => 1000 => 0010 => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [4] => 10000 => 00010 => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => 10000 => 00010 => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => 100000 => 000010 => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => 1000000 => 0000010 => 1
([(3,4)],5) => [1] => 10 => 10 => 0
([(2,4),(3,4)],5) => [2] => 100 => 010 => 0
([(1,4),(2,4),(3,4)],5) => [3] => 1000 => 0010 => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [4] => 10000 => 00010 => 1
([(1,4),(2,3)],5) => [1,1] => 110 => 110 => 0
([(1,4),(2,3),(3,4)],5) => [3] => 1000 => 0010 => 0
([(0,1),(2,4),(3,4)],5) => [2,1] => 1010 => 0110 => 0
([(2,3),(2,4),(3,4)],5) => [3] => 1000 => 0010 => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [4] => 10000 => 00010 => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [4] => 10000 => 00010 => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 100000 => 000010 => 1
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => 10000 => 00010 => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [5] => 100000 => 000010 => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => 100000 => 000010 => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [5] => 100000 => 000010 => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 1000000 => 0000010 => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => 1000000 => 0000010 => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [4] => 10000 => 00010 => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => 10010 => 00110 => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [5] => 100000 => 000010 => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [6] => 1000000 => 0000010 => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => 100000 => 000010 => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => 1000000 => 0000010 => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [6] => 1000000 => 0000010 => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => 1000000 => 0000010 => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => 10000000 => 00000010 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [8] => 100000000 => 000000010 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [7] => 10000000 => 00000010 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [8] => 100000000 => 000000010 => 2
([(4,5)],6) => [1] => 10 => 10 => 0
([(3,5),(4,5)],6) => [2] => 100 => 010 => 0
([(2,5),(3,5),(4,5)],6) => [3] => 1000 => 0010 => 0
([(1,5),(2,5),(3,5),(4,5)],6) => [4] => 10000 => 00010 => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(2,5),(3,4)],6) => [1,1] => 110 => 110 => 0
([(2,5),(3,4),(4,5)],6) => [3] => 1000 => 0010 => 0
([(1,2),(3,5),(4,5)],6) => [2,1] => 1010 => 0110 => 0
([(3,4),(3,5),(4,5)],6) => [3] => 1000 => 0010 => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [4] => 10000 => 00010 => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => 10010 => 00110 => 0
([(2,5),(3,4),(3,5),(4,5)],6) => [4] => 10000 => 00010 => 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [5] => 100000 => 000010 => 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => 10000 => 00010 => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => 1100 => 1010 => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [5] => 100000 => 000010 => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [5] => 100000 => 000010 => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 10000000 => 00000010 => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => 1110 => 1110 => 1
([(1,5),(2,4),(3,4),(3,5)],6) => [4] => 10000 => 00010 => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => 10010 => 00110 => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => 10010 => 00110 => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [5] => 100000 => 000010 => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => 100010 => 000110 => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => 100000 => 000010 => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [5] => 100000 => 000010 => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => 100010 => 000110 => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => 10100 => 10010 => 0
>>> Load all 389 entries. <<<
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => 1000010 => 0000110 => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 100000000 => 000000010 => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [6] => 1000000 => 0000010 => 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => 11000 => 01010 => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [7] => 10000000 => 00000010 => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => 10000010 => 00000110 => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [8] => 100000000 => 000000010 => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [8] => 100000000 => 000000010 => 2
([(5,6)],7) => [1] => 10 => 10 => 0
([(4,6),(5,6)],7) => [2] => 100 => 010 => 0
([(3,6),(4,6),(5,6)],7) => [3] => 1000 => 0010 => 0
([(2,6),(3,6),(4,6),(5,6)],7) => [4] => 10000 => 00010 => 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(3,6),(4,5)],7) => [1,1] => 110 => 110 => 0
([(3,6),(4,5),(5,6)],7) => [3] => 1000 => 0010 => 0
([(2,3),(4,6),(5,6)],7) => [2,1] => 1010 => 0110 => 0
([(4,5),(4,6),(5,6)],7) => [3] => 1000 => 0010 => 0
([(2,6),(3,6),(4,5),(5,6)],7) => [4] => 10000 => 00010 => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [3,1] => 10010 => 00110 => 0
([(3,6),(4,5),(4,6),(5,6)],7) => [4] => 10000 => 00010 => 1
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [5] => 100000 => 000010 => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [4,1] => 100010 => 000110 => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => 10000 => 00010 => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2] => 1100 => 1010 => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [5] => 100000 => 000010 => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [3,2] => 10100 => 10010 => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [5] => 100000 => 000010 => 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(3,4)],7) => [1,1,1] => 1110 => 1110 => 1
([(2,6),(3,5),(4,5),(4,6)],7) => [4] => 10000 => 00010 => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [3,1] => 10010 => 00110 => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [2,1,1] => 10110 => 01110 => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => 10010 => 00110 => 0
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [4,1] => 100010 => 000110 => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5] => 100000 => 000010 => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,1] => 100010 => 000110 => 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 1000010 => 0000110 => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5] => 100000 => 000010 => 1
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [6] => 1000000 => 0000010 => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [5] => 100000 => 000010 => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => 100010 => 000110 => 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [3,2] => 10100 => 10010 => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2] => 10100 => 10010 => 0
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1] => 1000010 => 0000110 => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,2] => 100100 => 100010 => 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 1000010 => 0000110 => 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => 1000010 => 0000110 => 1
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 10000010 => 00000110 => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3] => 11000 => 01010 => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [7] => 10000000 => 00000010 => 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => 10000010 => 00000110 => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 100000010 => 000000110 => 2
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => [6] => 1000000 => 0000010 => 1
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,2] => 100100 => 100010 => 1
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,2] => 1000100 => 1000010 => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [4,1] => 100010 => 000110 => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => 100110 => 001110 => 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => 1000010 => 0000110 => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,1] => 10000010 => 00000110 => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [6] => 1000000 => 0000010 => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => 1000010 => 0000110 => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 11000 => 01010 => 0
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => 10000010 => 00000110 => 1
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 100000010 => 000000110 => 2
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => 11000 => 01010 => 0
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 10000010 => 00000110 => 1
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => 101000 => 010010 => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => 10000010 => 00000110 => 1
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => 100000010 => 000000110 => 2
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => [7] => 10000000 => 00000010 => 2
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 100000000 => 000000010 => 2
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => 100000010 => 000000110 => 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => 101000 => 010010 => 0
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,2] => 10000100 => 10000010 => 1
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => 1001000 => 0100010 => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [8] => 100000000 => 000000010 => 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => 10001000 => 01000010 => 1
search for individual values
searching the database for the individual values of this statistic
Description
The number of distinct cubes in a binary word.
A factor of a word is a sequence of consecutive letters. This statistic records the number of distinct non-empty words $u$ such that $uuu$ is a factor of the word.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
inverse Foata bijection
Description
The inverse of Foata's bijection.
See Mp00096Foata bijection.
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.