edit this statistic or download as text // json
Identifier
Values
=>
[+]=>1 [-]=>0 [+,+]=>2 [-,+]=>1 [+,-]=>1 [-,-]=>0 [2,1]=>0 [+,+,+]=>3 [-,+,+]=>2 [+,-,+]=>2 [+,+,-]=>2 [-,-,+]=>1 [-,+,-]=>1 [+,-,-]=>1 [-,-,-]=>0 [+,3,2]=>1 [-,3,2]=>0 [2,1,+]=>1 [2,1,-]=>0 [2,3,1]=>0 [3,1,2]=>0 [3,+,1]=>1 [3,-,1]=>0 [+,+,+,+]=>4 [-,+,+,+]=>3 [+,-,+,+]=>3 [+,+,-,+]=>3 [+,+,+,-]=>3 [-,-,+,+]=>2 [-,+,-,+]=>2 [-,+,+,-]=>2 [+,-,-,+]=>2 [+,-,+,-]=>2 [+,+,-,-]=>2 [-,-,-,+]=>1 [-,-,+,-]=>1 [-,+,-,-]=>1 [+,-,-,-]=>1 [-,-,-,-]=>0 [+,+,4,3]=>2 [-,+,4,3]=>1 [+,-,4,3]=>1 [-,-,4,3]=>0 [+,3,2,+]=>2 [-,3,2,+]=>1 [+,3,2,-]=>1 [-,3,2,-]=>0 [+,3,4,2]=>1 [-,3,4,2]=>0 [+,4,2,3]=>1 [-,4,2,3]=>0 [+,4,+,2]=>2 [-,4,+,2]=>1 [+,4,-,2]=>1 [-,4,-,2]=>0 [2,1,+,+]=>2 [2,1,-,+]=>1 [2,1,+,-]=>1 [2,1,-,-]=>0 [2,1,4,3]=>0 [2,3,1,+]=>1 [2,3,1,-]=>0 [2,3,4,1]=>0 [2,4,1,3]=>0 [2,4,+,1]=>1 [2,4,-,1]=>0 [3,1,2,+]=>1 [3,1,2,-]=>0 [3,1,4,2]=>0 [3,+,1,+]=>2 [3,-,1,+]=>1 [3,+,1,-]=>1 [3,-,1,-]=>0 [3,+,4,1]=>1 [3,-,4,1]=>0 [3,4,1,2]=>0 [3,4,2,1]=>0 [4,1,2,3]=>0 [4,1,+,2]=>1 [4,1,-,2]=>0 [4,+,1,3]=>1 [4,-,1,3]=>0 [4,+,+,1]=>2 [4,-,+,1]=>1 [4,+,-,1]=>1 [4,-,-,1]=>0 [4,3,1,2]=>0 [4,3,2,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of positively decorated fixed points of a decorated permutation.
Code
def as_permutation(pi):
    pi = list(pi)
    for i,a in enumerate(pi):
        if a < 0:
            pi[i] = -a
    return Permutation(pi)

def statistic(pi):
    tau = list(pi)
    return sum(1 for i in as_permutation(pi).fixed_points() if tau[i-1] > 0)
Created
Jun 20, 2019 at 07:59 by Christian Stump
Updated
Jun 20, 2019 at 07:59 by Christian Stump