Identifier
-
Mp00030:
Dyck paths
—zeta map⟶
Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001431: Dyck paths ⟶ ℤ
Values
[1,0] => [1,0] => [1,1,0,0] => [1,0,1,0] => 0
[1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => [1,1,0,0,1,0] => 1
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => 1
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => 2
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => 2
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => 3
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => 2
[1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => 1
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => 2
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
The zeta map $\zeta$ is a bijection on Dyck paths of semilength $n$.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path $D$ with corresponding area sequence $a=(a_1,\ldots,a_n)$ to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of $d_1$ north steps, followed by $d_1$ east steps, followed by $d_2$ north steps and $d_2$ east steps, and so on, where $d_i$ is the number of $i-1$'s within the sequence $a$.
For example, given $a=(0,1,2,2,2,3,1,2)$, we build the path
$$NE\ NNEE\ NNNNEEEE\ NE.$$ - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the $k$th and the $(k+1)$st peak must be filled by $d_k$ east steps and $d_{k+1}$ north steps. In the above example, the rectangle between the second and the third peak must be filled by $2$ east and $4$ north steps, the $2$ being the number of $1$'s in $a$, and $4$ being the number of $2$'s. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a $k-1$ or $k$, respectively. So to fill the $2\times 4$ rectangle, we look for $1$'s and $2$'s in the sequence and see $122212$, so this rectangle gets filled with $ENNNEN$.
The complete path we obtain in thus
$$NENNENNNENEEENEE.$$
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!