Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001431: Dyck paths ⟶ ℤ
Values
([(0,1)],2) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(1,2)],3) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(0,2),(1,2)],3) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 1
([(2,3)],4) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(1,3),(2,3)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(0,3),(1,2)],4) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(1,2),(1,3),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 1
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
([(3,4)],5) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(2,4),(3,4)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(1,4),(2,3)],5) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(2,3),(2,4),(3,4)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 1
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
([(4,5)],6) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(3,5),(4,5)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(2,5),(3,4)],6) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(3,4),(3,5),(4,5)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 1
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => 2
([(5,6)],7) => [1] => [1,0,1,0] => [1,1,0,0] => 1
([(4,6),(5,6)],7) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(3,6),(4,5)],7) => [1,1] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => 1
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(4,5),(4,6),(5,6)],7) => [3] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(3,5),(3,6),(4,5),(4,6)],7) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => 1
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => 1
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => 2
>>> Load all 149 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!