Identifier
Values
[1,0] => [1,0] => [1,1,0,0] => [1,0,1,0] => 0
[1,0,1,0] => [1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 0
[1,1,0,0] => [1,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,0,0] => 1
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 0
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => 1
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 0
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => 1
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => 1
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 1
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0] => 1
[1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => 1
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => 1
[1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => 2
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 1
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.
The modified algebra B is obtained from the stable Auslander algebra kQ/I by deleting all relations which contain walks of length at least three (conjectural this step of deletion is not necessary as the stable higher Auslander algebras might be quadratic) and taking as B then the algebra kQ^(op)/J when J is the quadratic perp of the ideal I.
See www.findstat.org/DyckPaths/NakayamaAlgebras for the definition of Loewy length and Nakayama algebras associated to Dyck paths.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
inverse Kreweras complement
Description
Return the inverse of the Kreweras complement of a Dyck path, regarded as a noncrossing set partition.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the $i$-th up step of the Dyck path is the size of the block of the set partition whose maximal element is $i$. If $i$ is not a maximal element of a block, the $(i+1)$-st step is also an up step.
Map
Delest-Viennot
Description
Return the Dyck path corresponding to the parallelogram polyomino obtained by applying Delest-Viennot's bijection.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\gamma^{(-1)}\circ\beta)(D)$.