Identifier
- St001432: Integer partitions ⟶ ℤ (values match St000783The side length of the largest staircase partition fitting into a partition.)
Values
[1] => 1
[2] => 1
[1,1] => 1
[3] => 1
[2,1] => 2
[1,1,1] => 1
[4] => 1
[3,1] => 2
[2,2] => 2
[2,1,1] => 2
[1,1,1,1] => 1
[5] => 1
[4,1] => 2
[3,2] => 2
[3,1,1] => 2
[2,2,1] => 2
[2,1,1,1] => 2
[1,1,1,1,1] => 1
[6] => 1
[5,1] => 2
[4,2] => 2
[4,1,1] => 2
[3,3] => 2
[3,2,1] => 3
[3,1,1,1] => 2
[2,2,2] => 2
[2,2,1,1] => 2
[2,1,1,1,1] => 2
[1,1,1,1,1,1] => 1
[7] => 1
[6,1] => 2
[5,2] => 2
[5,1,1] => 2
[4,3] => 2
[4,2,1] => 3
[4,1,1,1] => 2
[3,3,1] => 3
[3,2,2] => 3
[3,2,1,1] => 3
[3,1,1,1,1] => 2
[2,2,2,1] => 2
[2,2,1,1,1] => 2
[2,1,1,1,1,1] => 2
[1,1,1,1,1,1,1] => 1
[8] => 1
[7,1] => 2
[6,2] => 2
[6,1,1] => 2
[5,3] => 2
[5,2,1] => 3
[5,1,1,1] => 2
[4,4] => 2
[4,3,1] => 3
[4,2,2] => 3
[4,2,1,1] => 3
[4,1,1,1,1] => 2
[3,3,2] => 3
[3,3,1,1] => 3
[3,2,2,1] => 3
[3,2,1,1,1] => 3
[3,1,1,1,1,1] => 2
[2,2,2,2] => 2
[2,2,2,1,1] => 2
[2,2,1,1,1,1] => 2
[2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1] => 1
[9] => 1
[8,1] => 2
[7,2] => 2
[7,1,1] => 2
[6,3] => 2
[6,2,1] => 3
[6,1,1,1] => 2
[5,4] => 2
[5,3,1] => 3
[5,2,2] => 3
[5,2,1,1] => 3
[5,1,1,1,1] => 2
[4,4,1] => 3
[4,3,2] => 3
[4,3,1,1] => 3
[4,2,2,1] => 3
[4,2,1,1,1] => 3
[4,1,1,1,1,1] => 2
[3,3,3] => 3
[3,3,2,1] => 3
[3,3,1,1,1] => 3
[3,2,2,2] => 3
[3,2,2,1,1] => 3
[3,2,1,1,1,1] => 3
[3,1,1,1,1,1,1] => 2
[2,2,2,2,1] => 2
[2,2,2,1,1,1] => 2
[2,2,1,1,1,1,1] => 2
[2,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1] => 1
[10] => 1
[9,1] => 2
[8,2] => 2
[8,1,1] => 2
[7,3] => 2
>>> Load all 271 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Code
def statistic(p):
return posets.YoungsLatticePrincipalOrderIdeal(p).join_irreducibles_poset().width()
Created
Jun 22, 2019 at 09:23 by Rene Marczinzik
Updated
Feb 26, 2023 at 16:46 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!