Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001432: Integer partitions ⟶ ℤ (values match St000783The side length of the largest staircase partition fitting into a partition.)
Values
([],3) => [1,1,1] => [1,1] => [1] => 1
([],4) => [1,1,1,1] => [1,1,1] => [1,1] => 1
([(2,3)],4) => [2,1,1] => [1,1] => [1] => 1
([],5) => [1,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [1,1] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 1
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [1,1] => 1
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 1
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,1,1,1,1] => 1
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 1
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [1,1,1] => 1
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 1
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [2,1] => 2
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [1] => 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 1
([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
([(4,7),(5,6)],8) => [2,2,1,1,1,1] => [2,1,1,1,1] => [1,1,1,1] => 1
([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(4,6),(4,7),(5,6),(5,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(2,7),(3,7),(4,6),(5,6)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,1,1] => [2,1,1] => [1,1] => 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 1
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 1
([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2] => [2,2,2] => [2,2] => 2
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2] => [2,2] => [2] => 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2] => [2,2] => [2] => 1
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [7,1,1] => [1,1] => [1] => 1
>>> Load all 132 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!