Identifier
Values
([(0,3),(1,2)],4) => [1,1] => [1] => 0
([(1,4),(2,3)],5) => [1,1] => [1] => 0
([(0,1),(2,4),(3,4)],5) => [2,1] => [1] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1] => 0
([(2,5),(3,4)],6) => [1,1] => [1] => 0
([(1,2),(3,5),(4,5)],6) => [2,1] => [1] => 0
([(0,1),(2,5),(3,5),(4,5)],6) => [3,1] => [1] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2] => [2] => 0
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1] => 1
([(0,1),(2,5),(3,4),(4,5)],6) => [3,1] => [1] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,1] => [1] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2] => [2] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1] => [1] => 0
([(3,6),(4,5)],7) => [1,1] => [1] => 0
([(2,3),(4,6),(5,6)],7) => [2,1] => [1] => 0
([(1,2),(3,6),(4,6),(5,6)],7) => [3,1] => [1] => 0
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [4,1] => [1] => 0
([(1,6),(2,6),(3,5),(4,5)],7) => [2,2] => [2] => 0
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [3,2] => [2] => 0
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [3,1] => [1] => 0
([(0,3),(1,2),(4,6),(5,6)],7) => [2,1,1] => [1,1] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,1] => [1] => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [4,1] => [1] => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,1] => [1] => 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [1] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,1] => [1] => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [3,2] => [2] => 0
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,2] => [2] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1] => [1] => 0
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,2] => [2] => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [1] => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1] => [1] => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [1] => 0
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3] => [3] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1] => [1] => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [1] => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,2] => [2] => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,2] => [2] => 0
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [4,1] => [1] => 0
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,1] => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,1] => [1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,1] => [1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1] => [1] => 0
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [3] => 0
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1] => [1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [1] => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [3] => 0
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [1] => 0
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 0
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [1] => 0
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1] => [1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1] => [1] => 0
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1] => [1] => 0
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1] => [1] => 0
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1] => [1] => 0
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [3] => 0
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,2] => [2] => 0
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [3] => 0
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => [3] => 0
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1] => [1] => 0
search for individual values
searching the database for the individual values of this statistic
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
to edge-partition of connected components
Description
Sends a graph to the partition recording the number of edges in its connected components.